精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.证明:h'(αx1+βx2)<0.

分析 (1)当a=2时,利用导数的符号求得函数的单调性,再根据函数的单调性求得函数y=f(x)在[$\frac{1}{2}$,2]上的最大值.
(2)先求得g′(x)=$\frac{a}{x}$-2x+a,因为g(x)在区间(0,3)递增,所以g'(x)≥0在 (0,3)恒成立,分离参数a,求出a的范围即可;
(3)由题意可得,f(x)-mx=0有两个实根x1,x2,化简可得m=$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$-(x1+x2).可得h′(αx1+βx2)的解析式,由条件知(2α-1)(x2-x1)≤0,再用分析法证明h′(αx1+βx2)<0.

解答 解:(1)∵函数f(x)=alnx-x2
可得当a=2时,f′(x)=$\frac{2}{x}$-2x=$\frac{2-{2x}^{2}}{x}$,
故函数y=f(x)在[$\frac{1}{2}$,1]是增函数,在[1,2]是减函数,
所以f(x)max=f(1)=2ln1-12=-1.  
(2)因为g(x)=alnx-x2+ax,
所以g′(x)=$\frac{a}{x}$-2x+a,
若y=g(x)在区间(0,3)上为单调递增函数,
所以g′(x)≥0在(0,3)恒成立,
有$a≥\frac{{2{x^2}}}{x+1}$在(0,3)恒成立,
而y=$\frac{{2x}^{2}}{x+1}$,y′=$\frac{2x(x+2)}{{(x+1)}^{2}}$>0,
故函数y=$\frac{{2x}^{2}}{x+1}$在(0,3)递增,
故y<$\frac{9}{2}$,
综上:$a≥\frac{9}{2}$;
(3)由题意可得,h′(x)=$\frac{2}{x}$-2x-m,又f(x)-mx=0有两个实根x1,x2
∴$\left\{\begin{array}{l}{2l{nx}_{1}{{-x}_{1}}^{2}-{mx}_{1}=0}\\{2l{nx}_{2}{{-x}_{2}}^{2}-{mx}_{2}=0}\end{array}\right.$,两式相减,得2(lnx1-lnx2)-(x12-${{x}_{2}}^{2}$)=m(x1-x2),
∴m=$\frac{2(l{nx}_{1}-l{nx}_{2})}{{x}_{1}{-x}_{2}}$-(x1+x2),
于是h′(αx1+βx2)=$\frac{2}{{αx}_{1}+{βx}_{2}}$-2(αx1+βx2)-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$+(x1+x2
=$\frac{2}{{αx}_{1}+{βx}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$+(2α-1)(x2-x1),
∵β≥α,∴2α≤1,∴(2α-1)(x2-x1)≤0.
要证:h′(αx1+βx2)<0,只需证:=$\frac{2}{{αx}_{1}+{βx}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$<0,
只需证:$\frac{{x}_{1}{-x}_{2}}{{αx}_{1}+{βx}_{2}}$-ln $\frac{{x}_{1}}{{x}_{2}}$>0.(*),
令 $\frac{{x}_{1}}{{x}_{2}}$=t∈(0,1),
∴(*)化为  $\frac{1-t}{αt+β}$+lnt<0,
只证u(t)=lnt+$\frac{1-t}{αt+β}$<0即可,
∵u′(t)=$\frac{1}{t}$+$\frac{-(αt+β)-(1-t)α}{{(αt+β)}^{2}}$
=$\frac{1}{t}$-$\frac{1}{{(αt+β)}^{2}}$=$\frac{{α}^{2}(t-1)(t-\frac{{β}^{2}}{{α}^{2}})}{{t(αt+β)}^{2}}$,
又∵$\frac{{β}^{2}}{{α}^{2}}$≥1,0<t<1,
∴t-1<0,∴u′(t)>0,
∴u(t)在(0,1)上单调递增,
故有 u(t)<u(1)=0,
∴lnt+$\frac{1-t}{αt+β}$<0,
即$\frac{{x}_{1}{-x}_{2}}{{αx}_{1}+{βx}_{2}}$-ln $\frac{{x}_{1}}{{x}_{2}}$>0,
∴h′(αx1+βx2)<0.

点评 本题主要考查利用导数研究函数的单调性,利用函数的单调性求函数在闭区间上的最值,用分析法证明不等式,体现了转化的数学思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|ax-b|+|x+c|.
(1)当a=c=3,b=1时,求不等式f(x)≥4的解集;
(2)若a=1,c>0,b>0,f(x)min=1,求$\frac{1}{b}$+$\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.若直线l1与l2斜率相等,则l1∥l2
B.若直线l1∥l2,则k1=k2
C.若直线l1,l2的斜率不存在,则l1∥l2
D.若两条直线的斜率不相等,则两直线不平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x-1,x<0}\\{lo{g}_{a}x,x>0}\end{array}\right.$(a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{5}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=kx+1与抛物线y=x2交于A,B两点.O为坐标原点
(1)求证:OA⊥OB;
(2)若△AOB的面积为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{bn}满足:${b_n}=\frac{2^n}{a_n}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过直线l1:2x-y-1=0与直线l2:x+2y-3=0的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+y2=8相交于P,Q两点,且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设y=f(x)为定义在R上的可导函数,定义运算⊕和?如下:对任意m,n∈R均有m⊕n=|f(m)|•n;m?n=f'(m)+n.若存在a∈R,使得对于任意x∈R,恒有a⊕x=a?x=x成立,则称实数a为函数的基元,则下列函数中恰有两个基元的是(  )
A.f(x)=x2+1B.$f(x)=\frac{1}{2}({x^3}-3x)$C.f(x)=2x3+3x2D.f(x)=cosx

查看答案和解析>>

同步练习册答案