精英家教网 > 高中数学 > 题目详情
2.下列说法正确的是(  )
A.若直线l1与l2斜率相等,则l1∥l2
B.若直线l1∥l2,则k1=k2
C.若直线l1,l2的斜率不存在,则l1∥l2
D.若两条直线的斜率不相等,则两直线不平行

分析 根据两条直线的斜率相等时,这两条直线平行或重合,
两条直线平行时,这两条直线的斜率相等或它们的斜率不存在,判断即可.

解答 解:对于A,直线l1与l2斜率相等时,l1∥l2或l1与l2重合,∴A错误;
对于B,直线l1∥l2时,k1=k2或它们的斜率不存在,∴B错误;
对于C,直线l1、l2的斜率不存在时,l1∥l2或l1与l2重合,∴C错误;
对于D,直线l1与l2的斜率不相等时,l1与l2不平行,∴D正确.
故选:D.

点评 本题考查了直线平行与它们的斜率之间的关系应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是$2\sqrt{2}$,则圆M与圆N:x2+y2-6x-4y+12=0的位置关系是(  )
A.内切B.相交C.外切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-m是定义在区间[-3-m,m2-m]上的奇函数,则(  )
A.f(m)<f(1)B.f(m)>f(1)
C.f(m)=-f(1)D.f(m)与f(1)大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}的前n项和为Sn,已知${a_{m-1}}+{a_{m+1}}-2a_m^2=0,{S_{2m-1}}=39$则m=(  )
A.38B.39C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x和y之间的一组数据,若x、y具有线性相关关系,且回归方程为$\widehat{y}$=x+a,则a的值为2.5.
x0123
y1357

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式(x-2)(3-x)>0的解集是(  )
A.{x|x<2或x>3}B.{x|2<x<3}C.{x|x<2}D.{x|x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数$f(x)=2cos({ωx+\frac{π}{3}})$(ω>0)的最小正周期为π.
(1)求ω的值;
(2)记△A BC内角 A,B,C的对边分别为a,b,c,若$f({\frac{A}{2}-\frac{π}{6}})=1$,且$a=\frac{{\sqrt{3}}}{2}b$,求sin B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在区间(0,3)上为单调递增函数,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.证明:h'(αx1+βx2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为1-$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案