精英家教网 > 高中数学 > 题目详情
10.等差数列{an}的前n项和为Sn,已知${a_{m-1}}+{a_{m+1}}-2a_m^2=0,{S_{2m-1}}=39$则m=(  )
A.38B.39C.20D.19

分析 由等差数列的性质可得:am-1+am+1=2am,可得2am-2${a}_{m}^{2}$=0,又S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=39,即可得出.

解答 解:由等差数列的性质可得:am-1+am+1=2am
∵am-1+am+1-2${a}_{m}^{2}$=0,∴2am-2${a}_{m}^{2}$=0,
解得am=0或1.
又S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=39,
因此只能取am=1.
∴(2m-1)×1=39,解得m=20.
故选:C.

点评 本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
①若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
②?a∈R,使f(x)为偶函数;
③若f(0)=f(2),则f(x)的图象关于x=1对称;
④若a2-b-2>0,则函数h(x)=f(x)-2有2个零点.
其中正确命题的序号为①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|ax-b|+|x+c|.
(1)当a=c=3,b=1时,求不等式f(x)≥4的解集;
(2)若a=1,c>0,b>0,f(x)min=1,求$\frac{1}{b}$+$\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x∈[-1,0],θ∈[0,2π),二元函数$f(x,θ)=\frac{1+cosθ+x}{1+sinθ-x}$取最小值时,x=x0,θ=θ0则(  )
A.4x00=0B.4x00<0C.4x00>0D.以上均有可能.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C的方程为x2+y2-4x-6y+10=0,则过点(1,2)的最短弦的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将函数f(x)=sinωx(0<ω<6)图象向右平移$\frac{π}{6}$个单位后得到函数g(x)的图象.若g(x)图象的一个对称中心为($\frac{π}{2}$,0),则f(x)的最小正周期为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.若直线l1与l2斜率相等,则l1∥l2
B.若直线l1∥l2,则k1=k2
C.若直线l1,l2的斜率不存在,则l1∥l2
D.若两条直线的斜率不相等,则两直线不平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x-1,x<0}\\{lo{g}_{a}x,x>0}\end{array}\right.$(a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{5}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过直线l1:2x-y-1=0与直线l2:x+2y-3=0的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+y2=8相交于P,Q两点,且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

同步练习册答案