精英家教网 > 高中数学 > 题目详情
15.将函数f(x)=sinωx(0<ω<6)图象向右平移$\frac{π}{6}$个单位后得到函数g(x)的图象.若g(x)图象的一个对称中心为($\frac{π}{2}$,0),则f(x)的最小正周期为$\frac{2π}{3}$.

分析 求出g(x)的解析式,利用对称中心得出ω,再代入周期公式得出答案.

解答 解:g(x)=f(x-$\frac{π}{6}$)=sinω(x-$\frac{π}{6}$)=sin(ωx-$\frac{π}{6}$ω),
∴g($\frac{π}{2}$)=sin($\frac{π}{2}ω$-$\frac{π}{6}$ω)=0,
即$\frac{π}{2}ω$-$\frac{π}{6}$ω=kπ,k∈Z,
∴ω=3kπ,又0<ω<6,
∴ω=3,
∴f(x)的最小正周期为T=$\frac{2π}{3}$.
故答案为$\frac{2π}{3}$.

点评 本题考查了函数图象的变换,三角函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求下列函数的最值及取得最值时的x的值.
(1)y=sinx,x∈[-$\frac{π}{4}$,$\frac{3π}{4}$],当x=-$\frac{π}{4}$时,ymin=-$\frac{\sqrt{2}}{2}$;当x=$\frac{π}{2}$时,ymax=1;
(2)y=2sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈[0,2π];
(3)y=cos2x+$\sqrt{3}$sinx+$\frac{5}{4}$,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$$-\overrightarrow{AD}$$+\overrightarrow{BD}$=(  )
A.0B.$\overrightarrow{0}$C.2$\overrightarrow{BD}$D.2$\overrightarrow{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-1|+|2x+1|.
(1)求不等式f(x)≥3的解集;
(2)求函数g(x)=f(x)+|x-1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}的前n项和为Sn,已知${a_{m-1}}+{a_{m+1}}-2a_m^2=0,{S_{2m-1}}=39$则m=(  )
A.38B.39C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x、y满足(x+1)2+(y-2)2=16,求3x+4y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式(x-2)(3-x)>0的解集是(  )
A.{x|x<2或x>3}B.{x|2<x<3}C.{x|x<2}D.{x|x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一枚质地均匀的硬币连掷3次,有且仅有2次出现正面向上的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式(m-2)(m+3)<0的一个充分不必要条件是(  )
A.-3<m<0B.-3<m<2C.-3<m<4D.-1<m<3

查看答案和解析>>

同步练习册答案