精英家教网 > 高中数学 > 题目详情
7.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1与x轴交于A、B两点,过椭圆上一点P(x0,y0)(P不与A、B重合)的切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,过点A、B且垂直于x轴的垂线分别与l交于C、D两点,设CB、AD交于点Q,则点Q的轨迹方程为$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

分析 由椭圆方程可得A(-3,0),B(3,0),令x=-3,x=3分别代入切线方程,求得交点C,D,求得直线CB,AD的方程,两式相乘,再由P在椭圆上,化简整理即可得到所求轨迹方程.

解答 解:椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的a=3,
可得A(-3,0),B(3,0),
由x=-3代入切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,
可得y=$\frac{4(3+{x}_{0})}{3{y}_{0}}$,即C(-3,$\frac{4(3+{x}_{0})}{3{y}_{0}}$),
由x=3代入切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,
可得y=$\frac{4(3-{x}_{0})}{3{y}_{0}}$,即D(3,$\frac{4(3-{x}_{0})}{3{y}_{0}}$),
可得直线CB的方程为y=$\frac{2(3+{x}_{0})}{-9{y}_{0}}$(x-3)①
直线AD的方程为y=$\frac{2(3-{x}_{0})}{9{y}_{0}}$(x+3)②
①×②可得y2=-$\frac{4(9-{{x}_{0}}^{2})}{81{{y}_{0}}^{2}}$(x2-9),③
结合P在椭圆上,可得$\frac{{{x}_{0}}^{2}}{9}$+$\frac{{{y}_{0}}^{2}}{4}$=1,
即有9-x02=$\frac{9{{y}_{0}}^{2}}{4}$,
代入③可得,$\frac{{x}^{2}}{9}$+y2=1(x≠±3).
故答案为:$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

点评 本题考查椭圆的方程和性质,考查直线方程联立求交点,以及点的轨迹方程的求法,注意运用消元法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知x和y之间的一组数据,若x、y具有线性相关关系,且回归方程为$\widehat{y}$=x+a,则a的值为2.5.
x0123
y1357

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某同学投篮命中率为0.6,则该同学1次投篮时命中次数X的期望为(  )
A.0.4B.0.36C.0.16D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处测得公路北侧一山顶D在西偏北30°(即∠BAC=30°)的方向上;行驶600m后到达B处,测得此山顶在西偏北75°(即∠CBE=75°)的方向上,且仰角为30°.则此山的高度CD=(  )
A.$100\sqrt{6}$mB.$100\sqrt{3}$mC.$300\sqrt{6}$mD.$150\sqrt{3}$m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,且$∠AOB=\frac{π}{2}$,求k的值;
(2)若$k=\frac{1}{2}$,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.不求值,比较下列函数值的大小.
(1)sin$\frac{13π}{6}$,sin$\frac{3π}{4}$
(2)sin(-$\frac{54π}{7}$),sin(-$\frac{63π}{8}$)
(3)cos$\frac{13π}{6}$,cos(-$\frac{7π}{4}$)
(4)cos(-$\frac{34π}{7}$),cos(-$\frac{47π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$(s为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|+|x|(m∈R)
(1)若f(1)=1,解关于x的不等式f(x)<2
(2)若f(x)≥m2对任意实数x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案