精英家教网 > 高中数学 > 题目详情
18.某同学投篮命中率为0.6,则该同学1次投篮时命中次数X的期望为(  )
A.0.4B.0.36C.0.16D.0.6

分析 该同学1次投篮时命中次数X的可能取值为0,1,且P(X=0)=0.4,P(X=1)=0.6,由此能求出E(X)的值.

解答 解:某同学投篮命中率为0.6,
则该同学1次投篮时命中次数X的可能取值为0,1,
P(X=0)=0.4,
P(X=1)=0.6,
∴E(X)=0×0.4+1×0.6=0.6.
故选:D.

点评 本题考查离散型随机变量的数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)解不等式|x-1|+|x-2|≥5
(2)已知$\frac{1}{m}+\frac{1}{n}$=1(m>0,n>0)若m+4n≥|x-1|-|x-a|对?x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l过点P(-1,2)且点A(2,3)和点B(-4,6)到直线l的距离相等,则直线l的方程为x+2y-3=0或x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=kx+1与抛物线y=x2交于A,B两点.O为坐标原点
(1)求证:OA⊥OB;
(2)若△AOB的面积为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①等比数列{an}中,前n项和为Sn,公比为q,则Sn,S2n-Sn,S3n-S2n仍然是等比数列,其公比为qn
②一个正方体的顶点都在球面上,它的棱长为2cm,则球的体积是$4\sqrt{3}π$cm3
③若数列{an}是正项数列,
且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n(n∈{N^*})$,
则$\frac{a_1}{2}+\frac{a_2}{3}+…+\frac{a_n}{n+1}=2{n^2}+6n$;
④在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则${\overrightarrow{AD}^{\;}}{•^{\;}}\overrightarrow{BC}$的取值范围是[-5,2].
其中正确命题的序号是②③④(填番号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线l1,l2分别是函数f(x)=sinx,x∈[0,π]图象上点P1,P2处的切线,l1,l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积为$\frac{{π}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1与x轴交于A、B两点,过椭圆上一点P(x0,y0)(P不与A、B重合)的切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,过点A、B且垂直于x轴的垂线分别与l交于C、D两点,设CB、AD交于点Q,则点Q的轨迹方程为$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的方程为$ρ=\frac{36}{{4\sqrt{3}sinθ-12cosθ-ρ}}$,定点M(6,0),点N是曲线C1上的动点,Q为MN的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)已知直线l与x轴的交点为P,与曲线C2的交点为A,B,若AB的中点为D,求|PD|的长.

查看答案和解析>>

同步练习册答案