精英家教网 > 高中数学 > 题目详情
9.直线l过点P(-1,2)且点A(2,3)和点B(-4,6)到直线l的距离相等,则直线l的方程为x+2y-3=0或x=-1.

分析 当直线l为x=-1时,满足条件,因此直线l方程可以为x=-1.
当直线l的斜率存在时,设直线l的方程为:y-2=k(x+1),可得$\frac{|2k-3+k+2|}{\sqrt{{k}^{2}+1}}$=$\frac{|-4k-6+k+2|}{\sqrt{{k}^{2}+1}}$,解出即可得出.

解答 解:当直线l为x=-1时,满足条件,因此直线l方程可以为x=-1.
当直线l的斜率存在时,设直线l的方程为:y-2=k(x+1),化为:kx-y+k+2=0,
则$\frac{|2k-3+k+2|}{\sqrt{{k}^{2}+1}}$=$\frac{|-4k-6+k+2|}{\sqrt{{k}^{2}+1}}$,化为:3k-1=±(3k+4),解得k=-$\frac{1}{2}$.
∴直线l的方程为:y-2=-$\frac{1}{2}$(x+1),化为:x+2y-3=0.
综上可得:直线l的方程为:x+2y-3=0或x=-1.
故答案为:x+2y-3=0或x=-1.

点评 本题考查了直线方程、点到直线的距离公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合 计
南方学生602080
北方学生101020
合 计7030100
根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
P(K2≥k00.1000.0500.010
k02.7063.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若圆x2+y2-2x-4ay+1=0截直线l:x-y-1=0所得弦长为2$\sqrt{2}$,则圆的面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x和y之间的一组数据,若x、y具有线性相关关系,且回归方程为$\widehat{y}$=x+a,则a的值为2.5.
x0123
y1357

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为(  )
A.y2=4xB.y2=6xC.y2=8xD.y2=10x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数$f(x)=2cos({ωx+\frac{π}{3}})$(ω>0)的最小正周期为π.
(1)求ω的值;
(2)记△A BC内角 A,B,C的对边分别为a,b,c,若$f({\frac{A}{2}-\frac{π}{6}})=1$,且$a=\frac{{\sqrt{3}}}{2}b$,求sin B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.
(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;
(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某同学投篮命中率为0.6,则该同学1次投篮时命中次数X的期望为(  )
A.0.4B.0.36C.0.16D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.不求值,比较下列函数值的大小.
(1)sin$\frac{13π}{6}$,sin$\frac{3π}{4}$
(2)sin(-$\frac{54π}{7}$),sin(-$\frac{63π}{8}$)
(3)cos$\frac{13π}{6}$,cos(-$\frac{7π}{4}$)
(4)cos(-$\frac{34π}{7}$),cos(-$\frac{47π}{8}$)

查看答案和解析>>

同步练习册答案