11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1µÄ·½³ÌΪ$¦Ñ=\frac{36}{{4\sqrt{3}sin¦È-12cos¦È-¦Ñ}}$£¬¶¨µãM£¨6£¬0£©£¬µãNÊÇÇúÏßC1Éϵ͝µã£¬QΪMNµÄÖе㣮
£¨1£©ÇóµãQµÄ¹ì¼£C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªÖ±ÏßlÓëxÖáµÄ½»µãΪP£¬ÓëÇúÏßC2µÄ½»µãΪA£¬B£¬ÈôABµÄÖеãΪD£¬Çó|PD|µÄ³¤£®

·ÖÎö £¨1£©Çó³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪ${x}^{2}+{y}^{2}+12x-4\sqrt{3}y+36=0$£¬ÉèµãN£¨x¡ä£¬y¡ä£©£¬Q£¨x£¬y£©£¬ÓÉÖеã×ø±ê¹«Ê½µÃ$\left\{\begin{array}{l}{{x}^{'}=2x-6}\\{{y}^{'}=2y}\end{array}\right.$£¬ÓÉ´ËÄÜÇó³öµãQµÄ¹ì¼£C2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Pµã×ø±êΪP£¨$\sqrt{3}$£¬0£©£¬ÉèlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬µÃ£º${t}^{2}-£¨3+\sqrt{3}£©t+3=0$£¬ÓÉ´ËÄÜÇó³ö|PD|£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ·½³ÌΪ$¦Ñ=\frac{36}{{4\sqrt{3}sin¦È-12cos¦È-¦Ñ}}$£¬
¡à4$\sqrt{3}¦Ñsin¦È-12¦Ñcos¦È-{¦Ñ}^{2}$=36£¬
¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪ${x}^{2}+{y}^{2}+12x-4\sqrt{3}y+36=0$£¬
ÉèµãN£¨x¡ä£¬y¡ä£©£¬Q£¨x£¬y£©£¬
ÓÉÖеã×ø±ê¹«Ê½µÃ$\left\{\begin{array}{l}{{x}^{'}=2x-6}\\{{y}^{'}=2y}\end{array}\right.$£¬
´úÈë${x}^{2}+{y}^{2}+12x-4\sqrt{3}y+36=0$ÖУ¬
µÃµ½µãQµÄ¹ì¼£C2µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y-$\sqrt{3}$£©2=3£®
£¨2£©Pµã×ø±êΪP£¨$\sqrt{3}$£¬0£©£¬ÉèlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬µÃ£º${t}^{2}-£¨3+\sqrt{3}£©t+3=0$£¬
ÉèµãA£¬B£¬D¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬t3£¬
Ôò${t}_{1}+{t}_{2}=3+\sqrt{3}£¬{t}_{1}{t}_{2}=3$£¬
¡à|PD|=|t3|=|$\frac{{t}_{1}+{t}_{2}}{2}$|=$\frac{3+\sqrt{3}}{2}$£®

µãÆÀ ±¾Ì⿼²é¹ì¼£µÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵ÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Èý½Çº¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³Í¬Ñ§Í¶ÀºÃüÖÐÂÊΪ0.6£¬Ôò¸Ãͬѧ1´ÎͶÀºÊ±ÃüÖдÎÊýXµÄÆÚÍûΪ£¨¡¡¡¡£©
A£®0.4B£®0.36C£®0.16D£®0.6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®²»ÇóÖµ£¬±È½ÏÏÂÁк¯ÊýÖµµÄ´óС£®
£¨1£©sin$\frac{13¦Ð}{6}$£¬sin$\frac{3¦Ð}{4}$
£¨2£©sin£¨-$\frac{54¦Ð}{7}$£©£¬sin£¨-$\frac{63¦Ð}{8}$£©
£¨3£©cos$\frac{13¦Ð}{6}$£¬cos£¨-$\frac{7¦Ð}{4}$£©
£¨4£©cos£¨-$\frac{34¦Ð}{7}$£©£¬cos£¨-$\frac{47¦Ð}{8}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+s}\\{y=1-s}\end{array}\right.$£¨sΪ²ÎÊý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t+2}\\{y={t}^{2}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Ôò|AB|=£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¶¯µãMµ½¶¨µãF£¨1£¬0£©µÄ¾àÀëÓëµ½¶¨Ö±Ïßx=3µÄ¾àÀëÖ®±ÈΪ$\frac{{\sqrt{3}}}{3}$£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÒÑÖªPΪ¶¨Ö±Ïßx=3ÉÏÒ»µã£®
¢Ù¹ýµãF×÷FPµÄ´¹Ïß½»¹ì¼£CÓÚµãG£¨G²»ÔÚyÖáÉÏ£©£¬ÇóÖ¤£ºÖ±ÏßPGÓëOGµÄбÂÊÖ®»ýÊǶ¨Öµ£»
¢ÚÈôµãPµÄ×ø±êΪ£¨3£¬3£©£¬¹ýµãP×÷¶¯Ö±Ïßl½»¹ì¼£CÓÚ²»Í¬Á½µãR¡¢T£¬Ïß¶ÎRTÉϵĵãHÂú×ã$\frac{PR}{PT}=\frac{RH}{HT}$£¬ÇóÖ¤£ºµãHºãÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÖ±Ïß$l£º\sqrt{3}x+y-2\sqrt{3}=0$ÓëÔ²C£ºx2+y2=4ÏཻÓÚA£¬BÁ½µã£®
£¨1£©Çó|AB|£»
£¨2£©ÇóÏÒABËù¶ÔÔ²ÐĽǵĴóС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½ÇϵxOyÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±êΪ¦Ñ=2cos¦È£¬ÇÒÖ±Ïß$l£º\left\{\begin{array}{l}x=m+3t\\ y=4t\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚ²»Í¬Á½µãA£¬B£®
£¨1£©ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨2£©ÉèµãM£¨m£¬0£©£¬Èô|MA|•|MB|=1£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=|x-m|+|x|£¨m¡ÊR£©
£¨1£©Èôf£¨1£©=1£¬½â¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼2
£¨2£©Èôf£¨x£©¡Ým2¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³³¬ÊÐÁ¬Ëøµêͳ¼ÆÁ˳ÇÊмס¢Òҵĸ÷16̨×Ô¶¯ÊÛ»õ»úÔÚÖÐÎç12£º00ÖÁ13£º00¼äµÄÏúÊÛ½ð¶î£¬²¢Óþ¥Ò¶Í¼±íʾÈçͼ£®ÔòÓУ¨¡¡¡¡£©
A£®¼×³ÇÏúÊÛ¶î¶à£¬ÒҳDz»¹»Îȶ¨B£®¼×³ÇÏúÊÛ¶î¶à£¬ÒÒ³ÇÎȶ¨
C£®ÒÒ³ÇÏúÊÛ¶î¶à£¬¼×³ÇÎȶ¨D£®ÒÒ³ÇÏúÊÛ¶î¶à£¬¼×³Ç²»¹»Îȶ¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸