精英家教网 > 高中数学 > 题目详情
15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处测得公路北侧一山顶D在西偏北30°(即∠BAC=30°)的方向上;行驶600m后到达B处,测得此山顶在西偏北75°(即∠CBE=75°)的方向上,且仰角为30°.则此山的高度CD=(  )
A.$100\sqrt{6}$mB.$100\sqrt{3}$mC.$300\sqrt{6}$mD.$150\sqrt{3}$m

分析 在△ABC中利用正弦定理求出BC,再在Rt△BCD中求出CD.

解答 解:在△ABC中,AB=600,∠BAC=30°,∠ACB=∠CBE-∠BAC=45°,
由正弦定理得$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}$,即$\frac{600}{\frac{\sqrt{2}}{2}}=\frac{BC}{\frac{1}{2}}$,
解得BC=300$\sqrt{2}$,
在Rt△BCD中,∵tan30°=$\frac{CD}{BC}$=$\frac{\sqrt{3}}{3}$,
∴CD=$\frac{\sqrt{3}}{3}$BC=100$\sqrt{6}$.
故选A.

点评 本题考查了正弦定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知圆C的方程为x2+y2-4x-6y+10=0,则过点(1,2)的最短弦的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=kx+1与抛物线y=x2交于A,B两点.O为坐标原点
(1)求证:OA⊥OB;
(2)若△AOB的面积为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线l1,l2分别是函数f(x)=sinx,x∈[0,π]图象上点P1,P2处的切线,l1,l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积为$\frac{{π}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过直线l1:2x-y-1=0与直线l2:x+2y-3=0的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+y2=8相交于P,Q两点,且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1与x轴交于A、B两点,过椭圆上一点P(x0,y0)(P不与A、B重合)的切线l的方程为$\frac{{x}_{0}x}{9}$+$\frac{{y}_{0}y}{4}$=1,过点A、B且垂直于x轴的垂线分别与l交于C、D两点,设CB、AD交于点Q,则点Q的轨迹方程为$\frac{{x}^{2}}{9}$+y2=1(x≠±3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若对任意实数x,不等式|x-a|+|2x-1|≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知曲线C满足方程$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{2t-1}}\end{array}\right.$(t为参数),则曲线C上点的横坐标的取值范围是(  )
A.RB.[0,+∞)C.[1,+∞)D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案