精英家教网 > 高中数学 > 题目详情
17.数列{an}满足:an=$\left\{\begin{array}{l}{(3-a)n-3,}&{n≤7}\\{{a}^{{n-6}_{,}}}&{n>7}\end{array}\right.$,且{an}是递增数列,则实数a的取值范围是(2,3).

分析 首先,根据数列{an}是递增数列,得到$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{(3-a)×7-3<{a}^{2}}\end{array}\right.$,求解实数a的取值范围即可.

解答 解:∵an=$\left\{\begin{array}{l}{(3-a)n-3,}&{n≤7}\\{{a}^{{n-6}_{,}}}&{n>7}\end{array}\right.$,且数列{an}是递增数列,则$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{(3-a)×7-3<{a}^{2}}\end{array}\right.$,
∴2<a<3,
∴a∈(2,3),
∴实数a的取值范围是(2,3).
故答案为:(2,3).

点评 本题重点考查了数列的函数特征,数列的增长趋势,属于综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知:z(1+2i)=3-i,则$\overline z$=(  )
A.$1+\frac{7}{5}i$B.$\frac{1}{5}+\frac{7}{5}i$C.$\frac{1}{3}-\frac{7}{3}i$D.$\frac{5}{3}-\frac{7}{3}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a2=1,a6=21,则a4=(  )
A.22B.16C.11D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知复数z满足(z-i)i=2+3i,则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知两个不同的动点A,B在椭圆$\frac{y^2}{8}+\frac{x^2}{4}=1$上,且线段AB的垂直平分线恒过点P(0,-1).求:(Ⅰ)线段AB中点M的轨迹方程;
(Ⅱ)线段AB长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a-b>0,下列不等式一定成立的个数是(  )
(1)$\frac{1}{a}<\frac{1}{b}$(2)$\frac{b}{a}<1$(3)2a-b>1(4)ln(a-b)>0.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$m=\int_{-1}^{1}{(3{x^2}}+sinx)dx$,则(x-$\frac{m}{x}$)6的展开式中的常数项为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AE}$,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案