精英家教网 > 高中数学 > 题目详情
3.已知全集U=R,集合A={x|x2-3x≤0},B={x|a≤x≤a+2,a∈R}.
(1)当a=1时,求A∩B;
(2)当集合A,B满足B⊆A时,求实数a的取值范围.

分析 (1)当a=1时,求出集合A,B,利用交集定义能出A∩B.
(2)求出集合A,由集合A,B满足B⊆A,列出不等式,能求出实数a的取值范围.

解答 解:(1)当a=1时,集合A={x|x2-3x≤0}={x|0≤x≤3},B={x|1≤x≤3}.
∴A∩B={x|1≤x≤3}.
(2)∵集合A={x|x2-3x≤0}={x|0≤x≤3},
B={x|a≤x≤a+2,a∈R},集合A,B满足B⊆A,
∴$\left\{\begin{array}{l}a≥0\\ a+2≤3\end{array}\right.$,解得0≤a≤1,
∴实数a的取值范围是[0,1].

点评 本题考查并集、实数的取值范围的求法,考查并集、集合的包含关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
组号年龄访谈人数愿意使用
1[18,28)44
2[28,38)99
3[38,48)1615
4[48,58)1512
5[58,68)62
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数年龄低于48岁的人数合计
愿意使用的人数
不愿意使用的人数
合计
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(d+b)}$,其中:n=a+b+c+d.
P(k2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若扇形的半径为6cm,所对的弧长为2πcm,则这个扇形的面积是(  )
A.12πcm2B.6 cm2C.6πcm2D.4 cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,4},B={x|a+x=1},若A∩B=B,则实数a组成的集合是(  )
A.{0}B.{0,1}C.{0,-3}D.{0,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,得到的图象对应的函数g(x)为奇函数.
(1)求f(x)的解析式及单调增区间;
(2)对任意$x∈[{0,\frac{π}{3}}]$,f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.点P(x0,y0)在椭圆C:$\frac{x^2}{2}+{y^2}$=1上,且x0=$\sqrt{2}cosβ,{y_0}$=sinβ,0<β<$\frac{π}{2}$.直线l2与直线l1:$\frac{{{x_0}x}}{2}+{y_0}$y=1垂直,O为坐标原点,直线OP的倾斜角为α,直线l2的倾斜角为γ.
(1)证明:点P是椭圆C:$\frac{x^2}{2}+{y^2}$=1与直线l1的唯一公共点;
(2)证明:tanα,tanβ,tanγ构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若a1,a2,a3,…,an均为正数,则有
二元均值不等式:${a_1}+{a_2}≥2\sqrt{{a_1}•{a_2}}$,当且仅当a1=a2时取等号;
三元均值不等式:${a_1}+{a_2}+{a_3}≥3\root{3}{{{a_1}•{a_2}•{a_3}}}$,当且仅当a1=a2=a3时取等号;
四元均值不等式:${a_1}+{a_2}+{a_3}+{a_4}≥4\root{4}{{{a_1}•{a_2}•{a_3}•{a_4}}}$,当且仅当a1=a2=a3=a4时取等号.
(1)猜想n元均值不等式;
(2)若x,y,z均为正数,且x+y+z=6,求xyz的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{a}$=(m,n),平面向量$\overrightarrow{b}$=(p,q),(其中m,n,p,q∈Z).
定义:$\overrightarrow{a}$?$\overrightarrow{b}$=(mp-nq,mq+np).若$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,1),则$\overrightarrow{a}$?$\overrightarrow{b}$=(0,5);
若$\overrightarrow{a}$?$\overrightarrow{b}$=(5,0),且|$\overrightarrow{a}$|<5,|$\overrightarrow{b}$|<5,则$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,-1)(写出一组满足此条件的$\overrightarrow{a}$和$\overrightarrow{b}$即可).

查看答案和解析>>

同步练习册答案