分析 (1)根据对称轴距离周期,从而得出ω,利用函数图象变换和奇函数的性质得出φ,从而得出f(x)的解析式,利用正弦函数的性质可得单调增区间;
(2)求出f(x)的值域,令f(x)=t,则关于t的不等式t2-(2+m)t+m+2≤0在[-$\sqrt{3}$,1-$\sqrt{3}$]上恒成立,根据二次函数的性质列不等式得出m的范围.
解答 解:(1)f(x)的周期T=$\frac{2π}{ω}$=$\frac{π}{2}×2$=π,
∴ω=2,
∴g(x)=f(x-$\frac{π}{6}$)+$\sqrt{3}$=sin(2x-$\frac{π}{3}$+φ)-b+$\sqrt{3}$.
∵g(x)是奇函数,0<φ<π,
∴φ=$\frac{π}{3}$,b=$\sqrt{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,
解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,
∴f(x)的单调增区间为[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z.
(2)∵x∈[0,$\frac{π}{3}$],∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,π],
∴f(x)∈[-$\sqrt{3}$,1-$\sqrt{3}$],
令f(x)=t,则关于t的不等式t2-(2+m)t+m+2≤0在[-$\sqrt{3}$,1-$\sqrt{3}$]上恒成立,
∵t2-(2+m)t+m+2=0的根为t=1,或t=m+2.
∴m+2≤-$\sqrt{3}$,即m≤-2-$\sqrt{3}$.
点评 本题考查了三角函数的图象与性质,二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x3 | B. | y=ln|x| | C. | y=sin($\frac{π}{2}$-x) | D. | y=-x2-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com