精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\sqrt{3}$sin2x+cos2x.
(1)当x∈[0,$\frac{π}{4}$]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

分析 (1)函数f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),由x∈[0,$\frac{π}{4}$],得$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{2π}{3}$,由此能求出f(x)的取值范围.
(2)由f(x)=2sin(2x+$\frac{π}{6}$),得函数y=f(x)的单调递增区间满足条件-$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z,由此能求出函数y=f(x)的单调递增区间.

解答 解:(1)函数f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
∵x∈[0,$\frac{π}{4}$],∴$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{2π}{3}$,
当2x+$\frac{π}{6}$=$\frac{π}{6}$时,f(x)min=f(0)=2sin$\frac{π}{6}$=1,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)max=f($\frac{π}{6}$)=2sin$\frac{π}{2}$=2.
∴f(x)的取值范围[1,2].
(2)∵f(x)=2sin(2x+$\frac{π}{6}$),
∴函数y=f(x)的单调递增区间满足条件:
-$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$,k∈Z,
解得kπ-$\frac{π}{3}$≤x≤$kπ+\frac{π}{6}$,k∈Z,
∴函数y=f(x)的单调递增区间为[$kπ-\frac{π}{3}$,k$π+\frac{π}{6}$].k∈Z.

点评 本题考查三角函数的取值范围的求法,考查三角函数的单调增区间的求法,考查二倍角公式、降幂公式、三角函数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{{\begin{array}{l}{-x+4,x≤2}\\{{a^x}+2a+1,x>2}\end{array}}$,其中a>0且a≠1.若a=$\frac{1}{2}$时方程f(x)=b有两个不同的实根,则实数b的取值范围是(2,$\frac{9}{4}$);若f(x)的值域为[2,+∞),则实数a的取值范围是[$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,得到的图象对应的函数g(x)为奇函数.
(1)求f(x)的解析式及单调增区间;
(2)对任意$x∈[{0,\frac{π}{3}}]$,f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若a1,a2,a3,…,an均为正数,则有
二元均值不等式:${a_1}+{a_2}≥2\sqrt{{a_1}•{a_2}}$,当且仅当a1=a2时取等号;
三元均值不等式:${a_1}+{a_2}+{a_3}≥3\root{3}{{{a_1}•{a_2}•{a_3}}}$,当且仅当a1=a2=a3时取等号;
四元均值不等式:${a_1}+{a_2}+{a_3}+{a_4}≥4\root{4}{{{a_1}•{a_2}•{a_3}•{a_4}}}$,当且仅当a1=a2=a3=a4时取等号.
(1)猜想n元均值不等式;
(2)若x,y,z均为正数,且x+y+z=6,求xyz的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x0∈R,lnx0≥x0-1和命题q:?θ∈R,sinθ+cosθ>-1,则下列命题中为真命题的是(  )
A.p∧qB.¬p∨qC.¬p∧¬qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的取值范围;
(2)若f(x)是周期函数,证明:f(x)是常值函数;
(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式|x-1|+|x+2|≥a恒成立,则a的取值范围为(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆$\frac{x^2}{m}+\frac{y^2}{3}=1$的两个焦点F1,F2都在x轴上,P是第一象限内该椭圆上的一点,且$\frac{{sin∠P{F_1}{F_2}+sin∠P{F_2}{F_1}}}{{sin∠{F_1}P{F_2}}}=2$,则正数m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+1}{{e}^{x}}$(e是自然对数的底数),h(x)=1-x-xlnx.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求h(x)的单调区间;
(3)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

同步练习册答案