精英家教网 > 高中数学 > 题目详情
2.已知命题p:?x0∈R,lnx0≥x0-1和命题q:?θ∈R,sinθ+cosθ>-1,则下列命题中为真命题的是(  )
A.p∧qB.¬p∨qC.¬p∧¬qD.p∧¬q

分析 先判断命题p和命题q的真假,进而根据复合命题真假判断的真值表,得到答案.

解答 解:?x0=1∈R,使lnx0=x0-1=0.
故命题p:?x0∈R,lnx0≥x0-1为真命题,
当θ=π时,sinθ+cosθ=-1,
故命题q:?θ∈R,sinθ+cosθ>-1为假命题,
故命题p∧(?q)为真命题,
命题p∧q,(?p)∧(?q),¬p∨q为假命题,
故选:D.

点评 本题以命题的真假判断与应用为载体,考查了复合命题,全称命题和特称命题等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设集合A={x|-1≤x≤3},B={x|x2-3x+2<0},则A∩(∁RB)=(  )
A.[-1,1)∪(2,3)B.[-1,1]∪[2,3]C.(1,2)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知(1+3x2n的展开式中,各项系数和比它的二项式系数和大992.求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有114 种不同的考试安排方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=sinxcosx+$\sqrt{3}$cos2x,则f(x)的单调递减区间是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin2x+cos2x.
(1)当x∈[0,$\frac{π}{4}$]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线sinθ•x-y+1=0的倾斜角的取值范围是(  )
A.[0,π)B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{0,\frac{π}{4}}]∪({\frac{π}{2},π})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.阅读程序框图,并完成下列问题:
(1)若输入x=0,求输出的结果;
(2)请将该程序框图改成分段函数解析式;
(3)若输出的函数值在区间$[{\frac{1}{4},\frac{1}{2}}]$内,求输入的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\sqrt{27-{3}^{x}}$+log2(x+2)的定义域为(  )
A.(-2,3)B.(-2,3]C.(0,3)D.(0,3]

查看答案和解析>>

同步练习册答案