精英家教网 > 高中数学 > 题目详情
1.设集合A={x|-1≤x≤3},B={x|x2-3x+2<0},则A∩(∁RB)=(  )
A.[-1,1)∪(2,3)B.[-1,1]∪[2,3]C.(1,2)D.R

分析 运用二次不等式的解法,化简集合B,再由补集和交集的定义,即可得到所求集合.

解答 解:集合A={x|-1≤x≤3}=[-1,3],
B={x|x2-3x+2<0}={x|1<x<2}=[1,2],
则A∩(∁RB)=[-1,3]∩[[2,+∞)∪(-∞,1]]
=[2,3]∪[-1,1],
故选:B.

点评 本题考查集合的运算,主要是交集和补集的运算,考查二次不等式的解法,运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的前n项和为Sn,已知a19+2a20+a21=4,则S39=(  )
A.38B.39C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.说明:请从A,B两小题中任选一题作答.
A.已知数列{an}的前n项和为Sn,且$2{S_n}={3^{n+1}}-3({n∈{N^*}})$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{a_n}{log_3}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.
(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,b>0,2ab+a+2b=3,则a+2b的最小值是(  )
A.1B.2C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{{\begin{array}{l}{-x+4,x≤2}\\{{a^x}+2a+1,x>2}\end{array}}$,其中a>0且a≠1.若a=$\frac{1}{2}$时方程f(x)=b有两个不同的实根,则实数b的取值范围是(2,$\frac{9}{4}$);若f(x)的值域为[2,+∞),则实数a的取值范围是[$\frac{1}{2}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若 tanα=-2,则sin($\frac{π}{2}+α$) cos(π+α)=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:函数f(x)=x3+ax+5在区间(-2,1)上不单调,若命题p的否定是一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x0∈R,lnx0≥x0-1和命题q:?θ∈R,sinθ+cosθ>-1,则下列命题中为真命题的是(  )
A.p∧qB.¬p∨qC.¬p∧¬qD.p∧¬q

查看答案和解析>>

同步练习册答案