精英家教网 > 高中数学 > 题目详情
12.说明:请从A,B两小题中任选一题作答.
A.已知数列{an}的前n项和为Sn,且$2{S_n}={3^{n+1}}-3({n∈{N^*}})$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{a_n}{log_3}{a_n}$,求数列{bn}的前n项和Tn

分析 (1)由数列的递推式:a1=S1,当n≥2时,an=Sn-Sn-1,计算即可得到所求通项公式;
(2)求得${b_n}=\frac{1}{a_n}{log_3}{a_n}$=$\frac{1}{{3}^{n}}$•log33n=n•($\frac{1}{3}$)n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,即可得到所求和.

解答 解:(1)数列{an}的前n项和为Sn,且$2{S_n}={3^{n+1}}-3({n∈{N^*}})$.
可得a1=S1=$\frac{1}{2}$×(9-3)=3,
当n≥2时,2an=2Sn-2Sn-1=3n+1-3-3n+3=2×3n
即有an=3n,对n=1也成立,
故an=3n,n∈N*;
(2)${b_n}=\frac{1}{a_n}{log_3}{a_n}$=$\frac{1}{{3}^{n}}$•log33n=n•($\frac{1}{3}$)n
前n项和Tn=1•($\frac{1}{3}$)+2•($\frac{1}{3}$)2+3•($\frac{1}{3}$)3+…+(n-1)•($\frac{1}{3}$)n-1+n•($\frac{1}{3}$)n
$\frac{1}{3}$Tn=1•($\frac{1}{3}$)2+2•($\frac{1}{3}$)3+3•($\frac{1}{3}$)4+…+(n-1)•($\frac{1}{3}$)n+n•($\frac{1}{3}$)n+1
相减可得,$\frac{2}{3}$Tn=($\frac{1}{3}$)+($\frac{1}{3}$)2+($\frac{1}{3}$)3+…+($\frac{1}{3}$)n-1+($\frac{1}{3}$)n-n•($\frac{1}{3}$)n+1
=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-n•($\frac{1}{3}$)n+1
化简可得Tn=$\frac{3}{4}$-$\frac{3+2n}{4}$•($\frac{1}{3}$)n

点评 本题考查数列的通项公式的求法,注意运用数列的递推式,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.为研究女大学生体重和身高的关系,从某大学随机选取8名女大学生,其身高和体重数据如表:
身高x/cm165165157170175165155170
体重y/kg4857505464614359
利用最小二乘法求得身高预报体重的回归方程:$\widehat{y}$=0.849x-85.712,据此可求得R2≈0.64.下列说法正确的是(  )
A.两组变量的相关系数为0.64
B.R2越趋近于1,表示两组变量的相关关系越强
C.女大学生的身高解释了64%的体重变化
D.女大学生的身高差异有64%是由体重引起的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点P(2,0)有一条直线l,它夹在两条直线l1:2x-y-2=0与l2:x+y+3=0之间的线段恰被点P平分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“穿越点”x0,在区间(0,5]上任取一个数a,则函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线ax+by+6=0与圆x2+y2+4x-1=0切于点P(-1,2),则ab为(  )
A.8B.2C.-8D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(1-x)n展开式中x2项的系数等于28,则n的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形,$PB=\sqrt{2}AB$,求二面角C-AF-D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|-1≤x≤3},B={x|x2-3x+2<0},则A∩(∁RB)=(  )
A.[-1,1)∪(2,3)B.[-1,1]∪[2,3]C.(1,2)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知(1+3x2n的展开式中,各项系数和比它的二项式系数和大992.求展开式中二项式系数最大的项.

查看答案和解析>>

同步练习册答案