精英家教网 > 高中数学 > 题目详情
20.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“穿越点”x0,在区间(0,5]上任取一个数a,则函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

分析 若函数在(0,+∞)上有飘移点,只需方程在该区间上有实根,然后借助于二次函数的性质可以解决

解答 解:函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”,
所以lg$\frac{a}{{2}^{{x}_{0}+1}+1}$=lg$\frac{a}{{2}^{{x}_{0}}+1}+lg\frac{a}{3}$成立,即$\frac{a}{{2}^{{x}_{0}+1}+1}=\frac{a}{{2}^{{x}_{0}}+1}×\frac{a}{3}$,
整理得${2}^{{x}_{0}}=\frac{a-3}{3-2a}$,由${2}^{{x}_{0}}$>0,得到$\frac{a-3}{2a-3}$<0,解得$\frac{3}{2}<a<3$,所以函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”a的范围是($\frac{3}{2}$,3),
所以在区间(0,5]上任取一个数a,则函数f(x)=lg$\frac{a}{{2}^{x}+1}$在(-∞,+∞)上有“穿越点”的概率为:$\frac{3-\frac{3}{2}}{5}=\frac{3}{10}$;
故选C.

点评 本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,要注意体会

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若x,y且x+y>2,则$\frac{1+y}{x}$和$\frac{1+x}{y}$的值满足(  )
A.$\frac{1+y}{x}$和$\frac{1+x}{y}$都大于2B.$\frac{1+y}{x}$和$\frac{1+x}{y}$都小于2
C.$\frac{1+y}{x}$和$\frac{1+x}{y}$中至少有一个小于2D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的前n项和为Sn,已知a19+2a20+a21=4,则S39=(  )
A.38B.39C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线y=-x3+3x2在点(1,2)处的切线方程为(  )
A.y=-3x+5B.y=3x-1C.y=3x+5D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{1}{2}$,点F1,F2是椭圆E的左、右焦点,过F1的直线与椭圆E交于A,B两点,且△F2AB的周长为8.
(1)求椭圆E的标准方程;
(2)动点M在椭圆E上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直 线MN的距离是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知平面向量$\overrightarrow a=(1,x),\overrightarrow b=(2x+3,-x)$  (x∈N)
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$垂直,求x;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.说明:请从A,B两小题中任选一题作答.
A.已知数列{an}的前n项和为Sn,且$2{S_n}={3^{n+1}}-3({n∈{N^*}})$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{1}{a_n}{log_3}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.
(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:函数f(x)=x3+ax+5在区间(-2,1)上不单调,若命题p的否定是一个真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案