精英家教网 > 高中数学 > 题目详情
19.不等式|x-1|+|x+2|≥a恒成立,则a的取值范围为(-∞,3].

分析 利用绝对值三角不等式求得|x-1|+|x+2|的最小值为3,从而得到a的取值范围.

解答 解:∵|x-1|+|x+2|≥|x-1-(x+2)|=3,当且仅当-2≤x≤1时,取得等号,故|x-1|+|x+2|的最小值为3,
再根据不等式|x-1|+|x+2|≥a恒成立,可得3≥a,即a≤3,
故答案为:(-∞,3].

点评 本题主要考查绝对值三角不等式的应用,函数的恒成立问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下5组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到如图所示的频率分布直方图. 
(Ⅰ)求a的值;
(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有114 种不同的考试安排方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin2x+cos2x.
(1)当x∈[0,$\frac{π}{4}$]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线sinθ•x-y+1=0的倾斜角的取值范围是(  )
A.[0,π)B.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$C.$[{0,\frac{π}{4}}]$D.$[{0,\frac{π}{4}}]∪({\frac{π}{2},π})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.阅读程序框图,并完成下列问题:
(1)若输入x=0,求输出的结果;
(2)请将该程序框图改成分段函数解析式;
(3)若输出的函数值在区间$[{\frac{1}{4},\frac{1}{2}}]$内,求输入的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=-1+2i,则z在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在下列五个命题中:
①已知大小分别为1N与2N的两个力,要使合力大小恰为$\sqrt{6}N$,则它们的夹角为$\frac{π}{3}$;
②已知$α=\frac{2π}{5}$,$β=-\frac{π}{7}$,则sinα<cosβ;
③若A,B,C是斜△ABC的三个内角,则恒有tanA+tanB+tanC=tanAtanBtanC成立;
④$计算式子sin{50^0}(1+\sqrt{3}tan{10^0})的结果是\frac{1}{2}$;
⑤已知$\sqrt{3}(cosx+1)=sinx且x∈(0,\frac{3π}{2})$,则x的大小为$\frac{2π}{3}$;
其中错误的命题有①②④⑤.(写出所有错误命题的序号)

查看答案和解析>>

同步练习册答案