精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(1,1),数学公式=(1,0),向量数学公式满足数学公式数学公式=0且|数学公式|=|数学公式|,数学公式数学公式>0.
(I)求向量数学公式
(Ⅱ)映射f:(x,y)→(x′,y′)=x•数学公式+y•数学公式,若将(x,y)看作点的坐标,问是否存在直线l,使得直线l上任意一点P在映射f的作用下仍在直线l上?若存在,求出l的方程,若不存在,说明理由.

解:(1)设=(x,y),由题意可得
解方程组得
经验证当时不满足,当时满足题意,
=(1,-1).
(2)假设直线l存在,∴x+y=(x+y,x-y),∵点(x+y,x-y)在直线l上,
因此直线l的斜率存在且不为零,设其方程为y=kx+b(k≠0),
∴x-y=k(x+y)+b,即(1+k)y=(1-k)x-b,与y=kx+b表示同一直线,
∴b=0,k=-1±
故直线l存在,其方程为y=(-1+)x,或y=(-1-)x.
分析:(1)设出向量的坐标根据已知条件列出式子解出坐标,然后验证是否满足
(2)由映射写出象的坐标建立方程,由两方程表示同一直线比较系数可得b、k的值.
点评:本题为向量的基本运算,涉及直线的方程的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
的夹角为
4
,且
m
n
=-1

(1)求向量
n

(2)设向量
a
=(1,0),向量
b
=(cosx,2cos2(
π
3
-
x
2
))
,若
a
n
=0,记函数f(x)=
m
•(
n
+
b
)
,求此函数的单调递增区间和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)已知向量
a
=(1,1),向量
b
与向量
a
的夹角为
3
4
π
,且
a
b
=-1.
(1)求向量
b

(2)若向量
b
q
=(1,0)的夹角为
π
2
,向量
p
=(cosA,2cos2
C
2
),其中A,C为△ABC的内角,且A+C=
2
3
π
,求|
b
+
p
|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(m,-1),
b
=(sinx,cosx),f(x)=
a
b
且满足f(
π
2
)=1

(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的最大值及其对应的x值;
(3)若f(α)=
1
5
,求
sin2α-2sin2α
1-tanα
的值.

查看答案和解析>>

科目:高中数学 来源:设计选修数学2-1苏教版 苏教版 题型:013

已知向量a=(1,1,0),b=(-1,0,2)且kab与2ab互相垂直,则k的值是

[  ]
A.

1

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知向量a=(1,1),b=(1,0),c满足a·c=0且|a|=|c|,b·c>0.

(1)求向量c;(2)若映射f:(x,y)→(x1,y1)=xa+yc,求映射f下(1,2)的原象.

查看答案和解析>>

同步练习册答案