精英家教网 > 高中数学 > 题目详情
(2006•咸安区模拟)定义如下运算:
x11x12x13x1n
x21x22x23x2n
x31x32x33x3n
xm1xm2xm3xmn
×
y11y12y13y1k
y21y22y23y2k
y31y32y33y3k
yn1yn2yn3ynk
=
z11z12z13z1k
z21z22z23z2k
z31z32z33z3k
zmkzmkzmkzmk

其中zij=xi1y1j+xi2y2j+xi3y3j+…+xinynj.(1≤i≤m,1≤j≤n,i.j∈N*).
现有n2个正数的数表A排成行列如下:(这里用aij表示位于第i行第j列的一个正数,i,j∈N*
a11a12a13a1n
a21a22a23a2n
a31a32a33a3n
an1an2an3ann
,其中每横行的数成等差数列,每竖列的数成等比数列,且各个等比数列的公比相同,若a24=1,a42=
1
8
a43=
3
16

(1)求aij的表达式(用i,j表示);
(2)若
a11a12a13a1n
a21a22a23a2n
a31a32a33a3n
an1an2an3ann
×
13
232
333
??
n3n
=
b11b12
b21b22
b31b32
??
bn1bn2
,求bi1.bi2(1≤i≤n,用i,n表示)
分析:(1)利用 a42=
1
8
a43=
3
16
求出a44,再利用每行上的数从左到右都成等比数列,并且所有公比都等于q来求aij的表达式即可.
(2)先求出ai1的通项,再利用错位相减法求解bi1.bi2即可.
解答:解:(1)∵a42=
1
8
a43=
3
16
,且每横行成等差数列,
a4j=a42+(j-2)(
3
16
-
1
8
)=
1
16
j

a44=
4
16
=
1
4

又∵a24=1,a44=
1
4

q=
1
2
(∵q>0)
aij=a4j(
1
2
)i-4=
j
2i

(2)bi1=
1
2i
×1+
2
2i
×2+
3
2i
×3+…+
n
2i
×n

=
1
2i
(12+22+32+…+n2)=
n(2n+1)(n+1)
2i+1
bi2=
1
2i
×3+
2
2i
×32+
3
2i
×33+…+
n
2i
×3n

3bi2=
1
2i
×32+
2
2i
×33+…+
n-1
2i
×3n+
n
2i
×3n+1

②-①得 2bi2=-
1
2i
(32+33+…+3n)+
n
2i
×3n+1-
1
2i
×3
=-
1
2i
×
32-3n+1
1-3
+
n
2i
×3n+1-
1
2i
×3
=
1
2i+1
[(2n-1)3n+1+3]

bi2=
1
2i+2
[(2n-1)3n+1+3]
点评:本题是对等差数列和等比数列的综合考查.并考查了数列求和的错位相减法.以及数列与函数的综合.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•咸安区模拟)函数f(x)是定义域为R的偶函数,且对任意的x∈R,均有f(x+2)=f(x)成立.当x∈[0,1]时,f(x)=loga(2-x)(a>1).
(1)当x∈[2k-1,2k+1](k∈Z)时,求f(x)的表达式;
(2)若f(x)的最大值为
1
2
,解关于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•咸安区模拟)已知x1•x2•x3…x2006=1,且x1,x2,…,x2006都是正数,则(1+x1)(1+x2)…(1+x2006)的最小值是
22006
22006

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•咸安区模拟)△ABC的两个顶点A、B的坐标分别是(-a,0),(a,0)(a>0),边AC、BC所在直线的斜率之积等于k.
①若k=-1,则△ABC是直角三角形;
②若k=1,则△ABC是直角三角形;
③若k=-2,则△ABC是锐角三角形;
④若k=2,则△ABC是锐角三角形.
以上四个命题中正确命题的序号是
①、③
①、③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•咸安区模拟)函数y=lgsin(
π
4
-2x)
的单调增区间是(  )

查看答案和解析>>

同步练习册答案