精英家教网 > 高中数学 > 题目详情

【题目】已知正方体,点是棱的中点,设直线,直线.对于下列两个命题:①过点有且只有一条直线都相交;②过点有且只有一条直线都成.以下判断正确的是(

A.①为真命题,②为真命题B.①为真命题,②为假命题

C.①为假命题,②为真命题D.①为假命题,②为假命题

【答案】B

【解析】

作出过P与两直线相交的直线l判断①;通过平移直线ab,结合异面直线所成角的概念判断②.

解:直线ABA1D1 是两条互相垂直的异面直线,点P不在这两异面直线中的任何一条上,如图所示:

BB1的中点Q,则PQA1D1,且 PQA1D1,设A1QAB交于E,则点A1D1QEP共面,

直线EP必与A1D1 相交于某点F,则过P点有且只有一条直线EFab都相交,故①为真命题;

分别平移ab,使ab均经过P,则有两条互相垂直的直线与ab都成45°角,故②为假命题.

∴①为真命题,②为假命题.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的三视图正视图、侧视图、俯视图如图所示,MN分别是的中点.

1)求证:平面

2)求证:平面

3)若这个多面体的六个顶点ABC都在同一个球面上,求这个球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,且a2+2a4a9S636

1)求anSn

2)若数列{bn}满足b11,求证:nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请解答以下问题,要求解决两个问题的方法不同.

1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,又数列满足:.

(1)求证:数列是等比数列;

(2)若数列是单调递增数列,求实数的取值范围;

(3)若数列的各项皆为正数,,设是数列的前项和,问:是否存在整数,使得数列是单调递减数列?若存在,求出整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调递增区间;

(2)中,内角ABC所对的边分别为abc,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.

组号

分组

频数

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合计

100

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;

(2)求频率分布直方图中的ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,二面角的大小为120°,点在棱上,且,点的重心.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案