【题目】已知数列
中,![]()
,又数列
满足:
.
(1)求证:数列
是等比数列;
(2)若数列
是单调递增数列,求实数
的取值范围;
(3)若数列
的各项皆为正数,
,设
是数列
的前
项和,问:是否存在整数
,使得数列
是单调递减数列?若存在,求出整数
;若不存在,请说明理由.
【答案】(1)见解析;(2)
;(3)存在整数
且
为正整数,使得数列
是单调递减数列.
【解析】
(1)利用等比数列的定义可证明
是等比数列.
(2)利用(1)求出
的通项,再根据单调增数列的定义可求实数
的取值范围.
(3)根据
是单调递减数列,可得
,总有
恒成立,再根据
的通项可得
为单调减数列,从而由
可得整数
满足的条件.
(1)因为
,故
,
整理得到
,因为
,故
,
所以
即
,故
是首项为
,公比为2的等比数列.
(2)由(1)知
是首项为
,公比为2的等比数列.
所以
,所以
,
因为
为单调递增数列,所以
对任意的
恒成立,
故
对任意的
恒成立,
整理得到
对任意的
恒成立,
当
时,
恒成立,故
,又
,故
.
所以实数
的取值范围为
.
(3)因为
的各项均为正数,故
.
又
,
因为
是单调递减数列,故任意
,总有
即
恒成立,
因为
,故
为递减数列,
故
.
任意
,
恒成立等价于
,又
,
所以
即
,又
为整数,故
.
存在整数
且
为正整数,使得数列
是单调递减数列.
科目:高中数学 来源: 题型:
【题目】如图,中心为坐标原点O的两圆半径分别为
,
,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线
、
,
交
于点P.
![]()
(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;
(2)直线l:
与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的
倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
![]()
则下列结论正确的是
![]()
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了
倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,
米,B为半圆上任意一点,以AB为一边作等腰直角
,其中BC为斜边.
![]()
若
;,求四边形OACB的面积;
现决定对四边形OACB区域地块进行开发,将
区域开发成垂钓中心,预计每平方米获利10元,将
区域开发成亲子采摘中心,预计每平方米获利20元,则当
为多大时,垂钓中心和亲子采摘中心获利之和最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体
,点
是棱
的中点,设直线
为
,直线
为
.对于下列两个命题:①过点
有且只有一条直线
与
、
都相交;②过点
有且只有一条直线
与
、
都成
角.以下判断正确的是( )
![]()
A.①为真命题,②为真命题B.①为真命题,②为假命题
C.①为假命题,②为真命题D.①为假命题,②为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形
中,
,
,四边形
为矩形,且
平面
,
.
![]()
(1)求证:
平面
;
(2)点
在线段
上运动,当点
在什么位置时,平面
与平面
所成锐二面角最大,并求此时二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。公元263年,中国数学家刘徽用“割圆术”计算圆周率,计算到圆内接3072边形的面积,得到的圆周率是
.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率
和约率
。大约在公元530年,印度数学大师阿耶波多算出圆周率约为
(
).在这4个圆周率的近似值中,最接近真实值的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2.
![]()
(1)求该四棱锥P-ABCD的表面积和体积;
(2)求该四棱锥P-ABCD内切球的表面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com