精英家教网 > 高中数学 > 题目详情
20.已知点P(x0,y0) 和点 A(3,4)在直线l:3x+2y-8=0的异侧,则(  )
A.3x0+2y0>0B.3x0+2y0<0C.3x0+2y0<8D.3x0+2y0>8

分析 根据点与直线的位置关系,结合不等式的性质即可得到结论.

解答 解:∵P(x0,y0)和点A(3,4)在直线l:3x+2y-8=0的异侧,
∴(3x0+2y0-8)(9+8-8)<0,
即3x0+2y0<8,
故选:C.

点评 本题主要考查二元一次不等式表示平面区域,利用点和直线的位置关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=4,A=60°,B=45°,则边b的值为(  )
A.2$\sqrt{6}$B.2+2$\sqrt{2}$C.$\frac{4\sqrt{6}}{3}$D.2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过点(2,0)且与直线x-2y-1=0垂直的直线方程是(  )
A.x-2y-2=0B.x-2y+2=0C.2x+y-4=0D.x+2y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.自行车大链轮有48齿,小链轮有20齿,当大链轮转过一周时,小链轮转过的角度是4.8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下五个命题:
①平面MENF⊥平面BDD'B'
②四边形MENF的面积的最大值为2;
③多面体ABCD-MENF的体积为$\frac{1}{2}$;
④四棱锥C′-MENF的体积恒为定值$\frac{1}{3}$;
⑤直线MN与直线CC′所成角的正弦值的范围是[${\frac{{\sqrt{6}}}{3}$,1]
以上命题中正确的有①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{y≥0}\end{array}\right.$,则z=(x+1)2+(y-2)2的最小值是$\frac{16}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:x2-2x-3>0,q:|x-1|<a,若¬p是q的充分不必要条件,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,++∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2的图象经过点A(1,3),且函数f(x)在x=-$\frac{4}{3}$处取得极值.
(1)求实数a,b的值;
(2)求函数f(x)在[-1,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)关于x的不等式mx2+6mx+m+8≥0在R上恒成立,求m的取值范围;
(2)对于集合A={x|x2-2ax+4a-3=0},B={x|x2-2$\sqrt{2}$x+a2+a+2=0}是否存在实数a,使A∪B=∅?若存在,求出a的取值,若不存在,试说明理由.

查看答案和解析>>

同步练习册答案