精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax3+bx2的图象经过点A(1,3),且函数f(x)在x=-$\frac{4}{3}$处取得极值.
(1)求实数a,b的值;
(2)求函数f(x)在[-1,2]的最大值和最小值.

分析 (1)求出函数的导数,得到关于a,b的方程组,求出a,b的值即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数在闭区间上的最值即可.

解答 解:(1)f′(x)=3ax2+2bx,
由题意得$\left\{\begin{array}{l}{f(1)=a+b=3}\\{f′(-\frac{4}{3})=3{a(-\frac{4}{3})}^{2}+2b(-\frac{4}{3})=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=2}\end{array}\right.$;
(2)由(1)知f(x)=x3+2x2
∴f′(x)=x(3x+4),
令f′(x)>0,解得:x>0或x<-$\frac{4}{3}$,
令f′(x)<0,解得:-$\frac{4}{3}$<x<0,
故函数f(x)在[-1,0]上单调递减,在[0,2]上单调递增,
∵f(-1)=1,f(2)=16,
∴f(x)min=f(0)=0,f(x)max=f(2)=16.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.为了调查甲网站受欢迎的程度,随机选取了13天,统计上午8:00-10:00间的点击量,得如图所示的统计图,根据统计图计算极差和中位数分别是(  )
A.22   13B.22   12C.23   13D.23  12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(x0,y0) 和点 A(3,4)在直线l:3x+2y-8=0的异侧,则(  )
A.3x0+2y0>0B.3x0+2y0<0C.3x0+2y0<8D.3x0+2y0>8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在5个球中有3个红球,2个白球(各不相同),不放回的依次摸出2个球,则在第一次摸出红球的条件下,第2次也摸出红球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{lnx-a}{x}$-m,(a,m∈R)在x=e(e为自然对数的底)时取得极值且有两个零点.
(1)求实数m的取值范围;
(2)记函数f(x)的两个零点为x1,x2,证明x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\frac{{\sqrt{3}tan10°+1}}{{({4{{cos}^2}10°-2})sin10°}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.当0<x≤$\frac{1}{4}$时,16x<logax,则a的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\sqrt{2})$D.$(\frac{{\sqrt{2}}}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],则cosα的取值范围是(  )
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程ax2+ay2-4(a-1)x+4y=0表示圆,则实数a的取值范围(  )
A.RB.(-∞,0)∪(0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案