精英家教网 > 高中数学 > 题目详情
已知集合A={a,b,c},B{x|1≤x≤9且x∈N}若映射f:A→B满足f(a)≤f(b)≤f(c)且f(a)+f(b)+f(c)=12,则这样的映射个数为(  )
A、12B、11C、10D、9
考点:映射
专题:函数的性质及应用
分析:根据已知中,集合A={a,b,c},B{x|1≤x≤9且x∈N}若映射f:A→B满足f(a)≤f(b)≤f(c)且f(a)+f(b)+f(c)=12,列举出所有满足条件的映射,可得答案.
解答: 解:∵集合A={a,b,c},B{x|1≤x≤9且x∈N},
映射f:A→B满足f(a)≤f(b)≤f(c)且f(a)+f(b)+f(c)=12,
∴f(a)=1,f(b)=2,f(c)=9,
f(a)=1,f(b)=3,f(c)=8,
f(a)=1,f(b)=4,f(c)=7,
f(a)=1,f(b)=5,f(c)=6,
f(a)=2,f(b)=2,f(c)=8,
f(a)=2,f(b)=3,f(c)=7,
f(a)=2,f(b)=4,f(c)=6,
f(a)=2,f(b)=5,f(c)=5,
f(a)=3,f(b)=3,f(c)=6,
f(a)=3,f(b)=4,f(c)=5,
f(a)=4,f(b)=4,f(c)=4,
共11个,
故选:B
点评:本题考查的知识点是映射,正确理解映射的定义,不重不漏的列举出所有满足条件的映射,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=-2,Sn=2an-3n(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a10=19,a2=3,an+1+an-1=2an(n≥2)
(1)求{an}的通项公式;
(2)若bn=a an,cn=an•bn,求数列{cn}的前n项之和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均为
1
6
,那么两个指针至少有一落在奇数所在区域的概率是(  )
A、
8
9
B、
2
9
C、
4
9
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知不等式x2+bx+c>0的解集是{x|x<2或x>3},求b、c的值;
(2)已知二次不等式ax2+bx+c<0的解集为{x|x<
1
3
或x>
1
2
},求关于x的不等式cx2-bx+a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

x-y+1≥0
x+y-1≥0
3x-y-3≤0
,则函数z=x2+y2取最小值时,x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来位置,那么直线l的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinx-siny=
1
2
,cosx-cosy=-
3
2
,求cos(x-y)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg(-x2+4x-3)的定义域为M,当x∈M,则f(x)=2x+1-4x+1的值域.

查看答案和解析>>

同步练习册答案