精英家教网 > 高中数学 > 题目详情
如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°AC=BC=a,A1在底面ABC上的射影恰为AC的中点D,又A1B⊥AC1
(Ⅰ)求证:BC⊥平面ACC1A1
(Ⅱ)求AA1与平面ABC所成的角;
(Ⅲ)求二面角B-AA1-C的正切值.
分析:(I)证明线面垂直,可用线垂直的判定定理,由题意知,可证A1D⊥BC与AC⊥BC,再由定理得出结论;
(II)求线面角,要先作出线面角,由线面角的定义,线与线在面内的投影所成的角即为线面角,由此找出线面角,在相应的三角形中求出它的三角函数值,再求角;
(III)先由二面角的平面角的定作出二面角的平面角,再在三角形中求出此角的大小.
解答:解:(I)证明:∵A1在底面ABC上的射影恰为AC的中点D,
∴A1D⊥面ABC,
∴A1D⊥BC,
∠BCA=90°,
∴AC⊥BC
∵A1D∩AC=D,
∴BC⊥平面ACC1A1
(II)由(I)知,A1D⊥面ABC,
AA1在平面ABC的射影是AC,
∴∠A1AD是AA1与平面ABC所成的角,又A1B⊥AC1,A1B在平面ACC1A1的投影为A1C,
∴A1C⊥AC,又ACC1A1是菱形,
∴AA1=AC=a,AD=DC=
1
2
a,在Rt△A1DA中,COS∠A1AD=
AD
A 1A
=
1
2
得∠A1AD=
π
3

(III)由(I)知BC⊥平面ACC1A1作CN⊥AA1,于点N,连接BN,∠BNC是二面角B-AA1 -C的平面角,
由图易知CN=
3
2
a,BC=a
∴在Rt△BCN中,tan∠BNC=
BC
CN
=
2
3
3

∴二面角B-AA1 -C的平面角的正切值为
2
3
3
点评:本题考查与二面角有关的立体几何题,考查了二面角的求法,线面角的求法,线面垂直等立体几何问题,解题的关键是熟练掌握线面角的作法,二面角的作法及线面垂直证明的定理,本题考查了数形结合的思想,规律性强,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成的角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥AB;
(3)求二面角B1-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,顶点B1在底面ABC上的射影D在AB上.
(1)求证:侧面ABB1A1⊥底面ABC;
(2)证明:B1C⊥C1A;
(3)求二面角B1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面所成的角为θ,且
AB1⊥BC1,点B1在底面上的射影D在BC上.
(I)若D点是BC的中点,求θ;
(Ⅱ)若cosθ=
13
,且AC=BC=AA1=a,求二面角C-AB-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)如图,已知斜三棱柱ABC-A1B1C1中,点B1在底面ABC上的射影落在BC上,CA=CB=a,AB=
2
a

(1)求证:AC⊥平面BCC1B1
(2)当BB1与底面ABC所成的角为60°,且AB1⊥BC1时,求点B1到平面AC1的距离.

查看答案和解析>>

同步练习册答案