△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.
证明:由正弦定理可知,a=2RsinA,b=2RsinB,c=2RsinC,代入a
2=b(b+c)中,
得sin
2A=sinB(sinB+sinC)
∴sin
2A-sin
2B=sinBsinC
∴

-

=sinBsin(A+B)
∴

(cos2B-cos2A)=sinBsin(A+B)
∴sin(A+B)sin(A-B)=sinBsin(A+B),
因为A、B、C为三角形的三内角,
所以sin(A+B)≠0.所以sin(A-B)=sinB.
所以只能有A-B=B,即A=2B.
分析:先利用正弦定理把题设等式中的边的问题转化成角的正弦,利用二倍角公式化简整理求得sin(A+B)sin(A-B)=
sinBsin(A+B),进而推断出sin(A-B)=sinB.求得A=2B原式得证.
点评:本题主要考查了正弦定理了的应用.研究三角形问题一般有两种思路.一是边化角,二是角化边.而正弦定理和余弦定理是完成这种转化的关键.