精英家教网 > 高中数学 > 题目详情
计算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:利用指数幂的运算法则即可得出.
解答: 解:原式=
a
1
6
-b
1
6
a3(a
1
6
-b
1
6
)
=
1
a3
点评:本题考查了指数幂的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4ax+2a+6(x∈R).
(1)求函数的最小值为0时的a的值;
(2)若函数f(x)的值均为非负值,求函数g(a)=2-a|a+3|的值域;
(3)若对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={y|y=2x},N={y|y=logx},则M∩N=(  )
A、{x|x>1}
B、{y|y≥1}
C、{x|x>0}
D、{y|y≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项an=
2n-19
2n-21
,n∈N+,求数列{an}前20项中的最大项与最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=9-x-2×31-x-27,x∈[-2,2],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-
1
3
ex3+ex(x-1)(其中e为自然对数的底数),记f(x)的导函数为f′(x).
(1)求函数y=f(x)的单调区间;
(2)求证:当x>0时,不等式f′(x)≥1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-b)cosA=acosB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC内部的一点O,恰使
OA
+2
OB
+3
OC
=
0
,则△OAB,△OAC,△OBC的面积之比为
 
.(结果须化为最简)

查看答案和解析>>

科目:高中数学 来源: 题型:

对某400件元件进行寿命追踪调查情况频率分布如下:
寿命(h)频率
[500,600)0.10
[600,700)0.15
[700,800)0.40
[800,900)0.20
[900,1000]0.15
合计1
(1)列出寿命与频数对应表;
(2)估计元件寿命在[500,800)内的频率;
(3)估计元件寿命在700h以上的频率.

查看答案和解析>>

同步练习册答案