精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-b)cosA=acosB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC的面积的最大值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)由正弦定理和三角函数公式可得cosA=
1
2
,可得A=
π
3

(2)由余弦定理结合基本不等式可得16=b2+c2-bc≥2bdc-bc,可得bc的最大值为16,进而可得△ABC的面积的最大值.
解答: 解:(1)∵(2c-b)cosA=acosB,
∴由正弦定理可得(2sinA-sinB)cosA=sinAcosB,
变形可得2sinCcosA=sinBcosA+sinAcosB=sin(A+B)=sinC,
∵C为三角形的内角,sinC≠0,∴cosA=
1
2
,A=
π
3

(2)由余弦定理可得a2=b2+c2-2bccosA,
代入数据可得16=b2+c2-bc≥2bdc-bc,∴bc≤16
当且仅当b=c时取等号,
∴△ABC的面积S=
1
2
bcsinA=
3
4
bc≤4
3

当且仅当b=c时取等号,
∴△ABC的面积的最大值为4
3
点评:本题考查正余弦定理,涉及基本不等式求最值,属比较基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},f(x)>0.满足f(x•y)=f(x)•f(y),且在区间(0,+∞)上单调递增,若实数a满足f(log2a)+f(log 
1
2
a)≤2f(1),则a的取值范围是(  )
A、[1,2]
B、(0,
1
2
]
C、[
1
2
,1
﹚∪(1,2]
D、(0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ax2-2x>ax+4(a>0且a≠1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

某县职工运动会将在本县一中运动场隆重召开,为了搞好接待工作,执委会在一中招募了12名男性志愿者和18名女性志愿者,调查发现,这30名志愿者的身高如图:(单位:cm)
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括我,175cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”
(1)应用你所学的独立性检验的知识判断是否有95%的把握认为“高个子”于性别有关.
参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥ke0.100.050.010.005
ke2.7063.8416.6357.879
(2)用分层抽样的方法从“高个子”中共抽取6人,若从这6个人中选2人,则他们至少有一人能担任礼仪小姐的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=
2x
4x+1

(1)求f(x)在(-1,0)上的解析式
(2)证明:f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=alnx+x2-10x的一个极值点.
(1)求实数a;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对边的长依次为a,b,c,若cosA=
3
4
,cosC=
1
8

(Ⅰ)求cos B的值;    
(Ⅱ)若|
AC
+
BC
|=
46
,求BC边上中线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-2)=2013,对任意x∈R都有f′(x)<2x成立,则不等式f(x)<x2+2009的解集是(  )
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

同步练习册答案