精英家教网 > 高中数学 > 题目详情
1.有5位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知5位同学之间共进行了8次交换,则收到4份纪念品的同学人数为(  )
A.1或2B.1或3C.2或3D.2或4

分析 由题意,C52-8=2,再分类讨论:仅有甲与乙,丙没交换纪念品;仅有甲与乙,丙与丁没交换纪念品,即可得出收到4份纪念品的同学人数.

解答 解:由题意,C52-8=2
①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为1人
②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为2人
综上所述,收到4份纪念品的同学人数为1或2人
故选:A.

点评 本题考查组合知识,考查分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2-2x+1存在唯一零点,则实数a的值为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求经过点的P($\frac{\sqrt{6}}{3}$,$\sqrt{3}$),Q($\frac{2\sqrt{2}}{3}$,1)的椭圆的标准方程;
(2)求与椭圆$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1有公共焦点,且离心率e=$\frac{5}{4}$的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}的前n项和为Sn,且满足:若Sn=$\frac{3}{2}$-$\frac{1}{2}$an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的各项为正,且满足bn≤$\frac{{a}_{n}{b}_{n-1}}{{a}_{n}+{b}_{n-1}}$,b1=1,求证:bn≤1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.进位制转化:1101(2)=13(10)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设1+$\frac{1}{x}$=-1,则x1992+$\frac{1}{{x}^{1992}}$=2-1992+21992

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题p:x2+2x-3>0;命题q:$\frac{1}{3-x}$>1,若“¬q且p”为真,则x的取值范围是(-∞,-3)∪(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=lg(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{10}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

同步练习册答案