精英家教网 > 高中数学 > 题目详情
3.某中学田径共有42名队员,其中男生28名、女生14名,采用分层抽样的方法选出6人参加一个座谈会.求运动员甲被抽到的概率以及选出的男、女运动员的人数为$\frac{1}{7}$,4,2.

分析 由等可能事件概率计算公式能求出运动员甲被抽到的概率,由分层抽样性质能求出选出的男、女运动员的人数.

解答 解:某中学田径共有42名队员,其中男生28名、女生14名,
采用分层抽样的方法选出6人参加一个座谈会.
运动员甲被抽到的概率p=$\frac{6}{42}$=$\frac{1}{7}$.
男生选出:6×$\frac{28}{28+14}$=4人,
女生选出:6×$\frac{14}{28+14}$=2人.
故答案为:$\frac{1}{7}$,4,2.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设全集A={1,2,3,4,5},B={2,4,6,8,10},则A∪B=(  )
A.{2,4}B.{1,2,3,4,5,6,8,10}
C.{1,2,3,4,5}D.{2,4,6,8,10}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,4),则$\overrightarrow{a}$•$\overrightarrow{b}$的值等于5;$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值等于$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个四棱锥的三视图如图所示,则这个四棱锥的体积等于(  )
A.8B.4C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示x与y具有线性相关关系,并由调查数据得到y对x的回归直线方程为:$\widehat{y}$=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,则年饮食支出平均增加(  )
A.0.254万元B.0.321万元C.0.575万元D.-0.254万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.i是虚数单位,复数$\frac{5i}{1-2i}$等于(  )
A.2-iB.1-2iC.-2+iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于60m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,$\sqrt{3}$≈1.73.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-ax在x=2处的切线l与直线x+2y-3=0平行.记函数g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求实数a的值;
(2)令h(x)=g(x)+2x,若h(x)存在单调递减区间,求实数b的取值范围;
(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列判断:
①f(x)=$\sqrt{x-2}+\sqrt{1-x}$有意义;
②已知集合A={x|mx=1},B={1,2},且A⊆B,则实数m=1或m=$\frac{1}{2}$;
③函数y=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},\;\;x<0\end{array}$的图象是抛物线;
④y=f(x)在R是增函数,则y=f(-x)在R是减函数.
其中正确的是④.

查看答案和解析>>

同步练习册答案