分析 根据条件即可得出$\overrightarrow{PA}•\overrightarrow{BC}=\overrightarrow{PB}•\overrightarrow{CA}=\overrightarrow{PC}•\overrightarrow{BA}=0$,这样即可由向量垂直的充要条件得出PA⊥BC,PB⊥CA,PC⊥BA,从而得出点P为垂心.
解答 解:由$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PC}•\overrightarrow{PB}=\overrightarrow{PA}•\overrightarrow{PC}$得,$\overrightarrow{PB}•(\overrightarrow{PA}-\overrightarrow{PC})=\overrightarrow{PB}•\overrightarrow{CA}=0$;
∴PB⊥CA;
同理,PC⊥BA,PA⊥BC;
如图所示,点P为△ABC三边的高线交点;![]()
∴P为三角形ABC的垂心.
故答案为:垂心.
点评 考查向量的数量积运算,向量减法的几何意义,以及向量垂直的充要条件,三角形垂心的定义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$-1 | D. | $\frac{\sqrt{2}}{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com