精英家教网 > 高中数学 > 题目详情
已知过点M(一3,0)的直线l被圆圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为
 
分析:设直线方程为y=k(x+3)或x=-3,根据直线l被圆圆x2+(y+2)2=25所截得的弦长为8,可得圆心到直线的距离为3,
利用点到直线的距离公式确定k值,验证x=-3是否符合题意.
解答:解:设直线方程为y=k(x+3)或x=-3,
∵圆心坐标为(0,-2),圆的半径为5,
∴圆心到直线的距离d=
52-42
=3,
|3k+2|
1+k2
=3⇒k=
5
12
,∴直线方程为y=
5
12
(x+3),即5x-12y+15=0;
直线x=-3,圆心到直线的距离d=|-3|=3,符合题意,
故答案是:5x-12y+15=0或x=-3.
点评:本题考查了待定系数法求直线方程,考查了直线与圆相交的相交弦长公式,注意不要漏掉x=-3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且|MN|=3椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距等于2|ON|,且过点(
2
6
2
)

(I) 求圆C和椭圆D的方程;
(Ⅱ) 设椭圆D与x轴负半轴的交点为P,若过点M的动直线l与椭圆D交于A、B两点,∠ANM=∠BNP是否恒成立?给出你的判断并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)已知左焦点为F(-1,0)的椭圆过点E(1,
2
3
3
).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

同步练习册答案