精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.
(1)圆C1:(x+4)2+y2=16-F,
则圆心(-4,0)到直线2
2
x-y+3+8
2
=0
的距离d=
|-8
2
+3+8
2
|
3

根据垂径定理及勾股定理得:(
2
3
2
)
2
+(
-8
2
+3+8
2
3
2=16-F,F=12
∴圆C1的方程为(x+4)2+y2=4;
(2)令圆的方程(x+4)2+y2=4中y=0得到:x=-6,x=-2,则A(-6,0),B(-2,0)
设P(x0,y0)(y0≠0),则(x0+4)2+y02=4,得到(x0+4)2-4=-y02
∴kPA=
y0
x0+6
则lPA:y=
y0
x0+6
(x+6),M(0,
6y0
x0+6

∴则lPB:y=
y0
x0+2
(x+2),N(0,
2y0
x0+2

圆C2的方程为x2+(y-
6y0
x0+6
-
2y0
x0+2
2
2=(
6y0
x0+6
-
2y0
x0+2
2
2
完全平方式展开并合并得:x2+y2-2(
6y0
x0+6
-
2y0
x0+2
2
)y+
12y02
(x0+4)2-4
=0
将①代入化简得x2+y2-2(
6y0
x0+6
-
2y0
x0+2
2
)y=0,
令y=0,得x=±2
3

又点Q(-2
3
,0),
由Q到圆C1的圆心(-4,0)的距离d=
(4-2
3
)
2
+0
=4-2
3
<2,则点Q在圆C1内,
所以当点P变化时,以MN为直径的圆C2经过圆C1内一定点(-2
3
,0);
(3)设R(-1,t),作C1F⊥RT于H,设C1H=d,
由于∠C1RH=30°,∴RC1=2d,
由题得d≤2,
∴RC1≤4,即
9+t2
≤4,∴-
7
≤t≤
7

∴点A的纵坐标的范围为[-
7
7
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案