精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+4|-|x-1|.

(1)解不等式f(x)>3;

(2)若不等式f(x)+1≤4a-5×2a有解求实数a的取值范围.

【答案】(1){x|x>0}.(2)(-∞,0][2,+∞).

【解析】

(Ⅰ)由题意可得f(x)的分段函数,分类讨论,求得不等式f(x)3的解集.

(Ⅱ)根据题意可得f(x)的最小值为﹣5,可得4a﹣5×2a﹣1≥﹣5,由此求得实数a的取值范围.

(1)f(x)=

x≤-4时,无解;

当-4<x<1时,由2x+3>3,

解得0<x<1;

x≥1时,5>3恒成立,

故原不等式的解集为{x|x>0}.

(2)f(x)+1≤4a-5×2a,即f(x)≤4a-5×2a-1有解,转化为f(x)min≤4a-5×2a-1.

易知f(x)的最小值为-5,

4a-5×2a-1≥-5,

4a-5×2a+4≥0,

2a≥42a≤1,a≥2a≤0,

故实数a的取值范围是(-∞,0][2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在侧棱垂直底面的四棱柱中, , 的中点,是平面与直线的交点.

(1)证明:

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面关于这四个函数奇偶性的判断正确的是(  )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lρsin=4和圆Cρ=2kcos(k≠0),若直线l上的点到圆C上的点的最小距离等于2.求实数k的值并求圆心C的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy曲线C1C2的参数方程分别是 (t是参数) (φ为参数).以原点O为极点x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)射线OMθα与曲线C1的交点为OP与曲线C2的交点为OQ|OP|·|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点 ,且与点 最近的一个最低点是
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知数列{an}满足a1=1,an+1=an2+an , 则[ + +…+ ]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx+b,a,b为实数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|< 对x∈[2,3]恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案