精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy曲线C1C2的参数方程分别是 (t是参数) (φ为参数).以原点O为极点x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)射线OMθα与曲线C1的交点为OP与曲线C2的交点为OQ|OP|·|OQ|的最大值.

【答案】(1)y2=4xρ=2sin θ.(2)8

【解析】

(1)利用三种方程的转化方法,即可求曲线C1的普通方程和曲线C2的极坐标方程;

(2)(1)可得C1的极坐标方程为ρsin2θ=4cosθ,与直线θ=α联立可得:ρ=,即|OP|=,同理可得|OQ|=2sinα.求出|OP||OQ|=,在α∈[]上单调递减,即可求|OP||OQ|的最大值.

(1)C1的普通方程为y2=4xC2的极坐标方程为ρ=2sin θ.

(2)(1)可得C1的极坐标方程为ρsin2θ=4cos θ,与直线θα联立可得:ρ

OP

同理可得OQ=2sin α.

所以|OP|·|OQ|=

f(α)=

易知f(α)α上单调递减,

所以(|OP|·|OQ|)max=8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点(2,5)和(8,3)是函数y=﹣k|x﹣a|+b与y=k|x﹣c|+d的图象仅有的两个交点,那么a+b+c+d的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设平面点集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},则(A∪B)∩C所表示的平面图形的面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点P(5,2)、F1(-6,0)、F2(6,0).

(1)求以F1F2为焦点且过点P的椭圆的标准方程

(2)设点PF1F2关于直线yx的对称点分别为P′、F1′、F2′,求以F1′、F2为焦点且过点P的双曲线的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+4|-|x-1|.

(1)解不等式f(x)>3;

(2)若不等式f(x)+1≤4a-5×2a有解求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第6节的容积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a≤0).
(1)当a=0时,求f(x)的极值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数存在单调递减区间,求实数的取值范围;

(Ⅱ)若,证明: ,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是(
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]

查看答案和解析>>

同步练习册答案