精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x3-9x2+12x分别在x1,x2处取得极小值,极大值.xoy平面上点A,B的坐标分别是(x1,f(x1)),(x2,f(x2)).
(1)求点A,B的坐标;
(2)该平面上动点P满足
PA
PB
=4,求P点的轨迹方程.
考点:利用导数研究函数的单调性,轨迹方程
专题:导数的概念及应用
分析:(1)先求出f′(x)=6x2-18x+12=0,得f(x)在(-∞,1),(2,+∞)递增,在(1,2)递减,从而x=1是极大值点,x=2是极小值点,进而求出A(2,4),B(1,5);
(2)设P(x,y),则
PA
=(2-x,4-y),
PB
=(1-x,5-y),从而
PA
PB
=(2-x)(1-x)+(4-y)(5-y)=4,化简得:(x-
3
2
)
2
+(y-
9
2
)
2
=
9
2
,进而求出P点的轨迹方程.
解答: 解:(1)f′(x)=6x2-18x+12=0,
令f′(x)>0,解得:x<1,x>2,
令f′(x)<0,解得:1<x<2,
∴f(x)在(-∞,1),(2,+∞)递增,在(1,2)递减,
∴x=1是极大值点,x=2是极小值点,
∴x1=2,f(x1 )=4,x2=1,f(x2 )=5,
∴A(2,4),B(1,5);
(2)设P(x,y),则
PA
=(2-x,4-y),
PB
=(1-x,5-y),
PA
PB
=(2-x)(1-x)+(4-y)(5-y)=4,
化简得:(x-
3
2
)
2
+(y-
9
2
)
2
=
9
2

∴P是以(
3
2
9
2
)为圆心,以
3
2
2
为半径的圆.
点评:本题考察了函数的单调性,导数的应用,向量的运算,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xlnx,且图象在点(
1
e
,f(
1
e
))处的切线斜率为1(e为自然对数的底数).
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=
f(x)-x
x-1
,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是三棱柱ABC-A1B1C1的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,D为AC的中点.
(1)求证:AB1∥平面BDC1
(2)设AB1垂直于BC1,且BC=2,求三棱柱ABC-A1B1C1的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为某几何体的三视图,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=1-
1
4an
,其中n∈N*
(1)设bn=
2
2an-1
,求证:数列{bn}是等差数列;
(2)若cn=6n+(-1)n-1λ•2 bn是否存在λ,使得对任意n∈N+,都有cn+1>cn,若存在,求出λ的取值范围;若不存在,说明理由;
(3)证明::对一切正整数n,有
1
b1(b1+1)
+
1
b2(b2+1)
+…+
1
bn(bn+1)
13
42

查看答案和解析>>

科目:高中数学 来源: 题型:

一副扑克,去掉大小王,现从中随机抽取一张扑克牌.求
(1)抽取的一张是红桃的概率?
(2)抽取的黑色的概率?
(3)抽取的方块或梅花的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD边长为2,侧棱AA1=6.
(1)点P在侧棱AA1上,若AP=
1
3
,求证:平面PBD⊥平面C1BD;
(2)求几何体BA1C1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x3-12x.
(1)求函数f(x)的单调递增区间.
(2)求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为d的等差数列;数列{bn}是公比为2的等比数列,且{bn}的前4项的和为
15
2

(1)求数列{bn}的通项公式;
(2)若d=3,求数列{an}中满足b8≤ai≤b9(i∈N*)的所有项ai的和;
(3)设数列{cn}满足cn=an•bn,数列{cn}的前n项和为Tn,若Tn的最大值为T5,求公差d的取值范围.

查看答案和解析>>

同步练习册答案