精英家教网 > 高中数学 > 题目详情
已知函数(b、c、d为常数),当时,只有一个实根,当时,有3个相异实根,现给出下列4个命题:
①函数有2个极值点;②函数有3个极值点;③有一个相同的实根;④有一个相同的实根。
其中正确命题的个数是(   )
A.1B.2C.3D.4
C
首先由这样的一个结论,对于函数,当时,的单调性是,先增后减(可能不存在减)再增;当时,的单调性是,先减后增(可能不存在增)再减。

由“当时,只有一个实根,当时,有3个相异实根”结合上面的结论可知,当单调递增,在上单调递减,极大值是,极小值是(其中是极大值点。是极小值点)
作出函数的示意图如下,
由此①③④对,②错,选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若 恒成立,试确定实数的取值范围;
(3)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若存在实数,使得函数对其定义域上的任意实数分别满足,则称直线的“和谐直线”.已知为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设
(1)当时,求:函数的单调区间;
(2)若时,求证:当时,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数
(Ⅰ)若处的切线相互垂直,求这两个切线方程.
(Ⅱ)若单调递增,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则        ▲          

查看答案和解析>>

同步练习册答案