精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为内角A.B.C的对边,且sin2A+sin2B-sin2C=sinA•sinB.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求△ABC面积的最大值.
分析:(1)先根据正弦定理找到角与边的关系,即用角的正弦表示出边,然后再用余弦定理可求出角C的余弦值,从而得到答案.
(2)先根据余弦定理找到边ab的范围,然后代入三角形的面积公式即可求出面积的最大值.
解答:解:(Ⅰ)解:根据正弦定理设ka=sinA,kb=sinB,kc=sinC,
∵sin2A+sin2B-sin2C=sinA•sinB.
∴k2a2+k2b2-k2c2=ka•kb,即:a2+b2-c2=a•b
∴由余弦定理cosC=
a2+b2-c2
2ab
=
1
2

∴C=
π
3

(Ⅱ)由余弦定理可知c2=a2+b2-2a•bcosC
∴4=a2+b2-a•b≥2ab-ab=ab(当且仅当a=b=2时等号成立)
即ab≤4
∴S△ABC=
1
2
absinC≤
1
2
×4×
3
2
=
3

∴△ABC面积的最大值为
3
点评:本题主要考查正弦定理和余弦定理的应用.属基础题.正弦定理与余弦定理在解三角形时有很大的用途,要给予重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案