精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,1),
b
=(cosx,1).
(1)若
a
=
b
且x为锐角,求x的值;
(2)求函数f(x)=
a
b
的最大值.
考点:平面向量数量积的运算,三角函数的最值
专题:平面向量及应用
分析:(1)根据两向量相等得sinx=cosx解答即可;
(2)利用两向量的数量积的定义先化简再求最值.
解答: (1)因
a
=
b
得sinx=cosx,又x为锐角,∴x=45°;
(2)因为f(x)=
a
b
=sinxcosx+1=
1
2
sin2x+1
1
2
+1=
3
2
点评:本题主要考察两向量的相等和向量的数量积,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的复数z是(  )
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

y=sin(x-
π
3
)的单调减区间是(  )
A、[kπ-
π
6
,kπ+
6
](k∈Z)
B、[2kπ-
π
6
,2kπ+
6
](k∈Z)
C、[kπ-
6
,kπ-
π
6
](k∈Z)
D、[2kπ-
6
,2kπ-
π
6
](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

2名女生和4名男生外出参加比赛活动.
(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法?
(2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?
(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=1,a5=9.
(1)求a3
(2)记bn=2an,证明:数列{bn}是等比数列;
(3)对于(2)中的Sn,求函数f(n)=Sn-t•2n(n∈N*,t为常数且t∈[0,8])的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-8(m-1)x+5在[-1,+∞)上为增函数.
(1)求实数m的最大值M;
(2)在条件(1)下解关于x的不等式:1+logM(4-a2)≤log
M
(ax-1)(其中a>0,a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an}的首项a1=
1
2
,前n项和为Sn,且210S30-(210+1)S20+S10=0.
(1)求{an}的通项;
(2)令bn=
1
(n+1)log
1
2
an
,记{bn}的前n项和为Tn,求满足不等式Tn
11
12
的n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C所对的边,且三角形周长为6,a、b、c成等比数列.
(1)求∠B的取值范围;
(2)求b的取值范围;
(3)求△ABC的面积S的最大值及此时a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心在第二象限内,半径为2
5
的圆O1与x轴交于(-5,0)和(3,0)两点.
(1)求圆O1的方程;
(2)求圆O1的过点A(1,6)的切线方程;
(3)已知点N(9,2)在(2)中的切线上,过点A作O1N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线PO1的斜率与直线PN的斜率之积.

查看答案和解析>>

同步练习册答案