精英家教网 > 高中数学 > 题目详情
(2012•浙江模拟)如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,PD⊥平面ABCD,AD=1,AB=
3
,BC=4.
(Ⅰ)求直线AB与平面PDC所成的角;
(Ⅱ)设点E在棱PC上,
PE
PC
,若DE∥平面PAB,求λ的值.
分析:(Ⅰ)根据PD⊥平面ABCD,可得平面PDC⊥平面ABCD.过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G,则∠FDG为直线AB与平面PDC所成的角,从而可得结论;
(Ⅱ)连接EF,证明平面DEF∥平面PAB,从而EF∥AB,利用平行线的性质,可求λ的值.
解答:解:(Ⅰ)∵PD⊥平面ABCD,PD?平面ABCD.
∴平面PDC⊥平面ABCD.
过D作DF∥AB交BC于F,过点F作FG⊥CD交CD于G,则∠FDG为直线AB与平面PDC所成的角.
在Rt△DFC中,∠DFC=90°,DF=
3
,CF=3,
∴tan∠FDG=
3
,∴∠FDG=60°.
即直线AB与平面PDC所成角为60°.…(6分)
(Ⅱ)连接EF,∵DF∥AB,∴DF∥平面PAB.
又∵DE∥平面PAB,DE∩DF=D
∴平面DEF∥平面PAB,
∵EF?平面DEF,∴EF∥AB.
又∵AD=1,BC=4,BF=1
PE
PC
=
BF
BC
=
1
4

PE
=
1
4
PC
,即λ=
1
4
…(14分)
点评:本题通过分层设计,考查了空间平行、垂直,以及线面成角等知识,考查学生的空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知函数f(x)=(x2-ax+1)•ex
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为
63
64
,则事件A恰好发生一次的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)焦点在x轴上的椭圆
x2
4a
+
y2
a2+1
=1
的离心率的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(  )

查看答案和解析>>

同步练习册答案