精英家教网 > 高中数学 > 题目详情
6.方程ρ=2cosθ表示的曲线是(  )
A.直线B.C.椭圆D.双曲线

分析 利用互化公式可得直角坐标方程,即可判断出结论.

解答 解:方程ρ=2cosθ即ρ2=2ρcosθ,化为:x2+y2=2x,配方为:(x-1)2+y2=1,
此方程表示以(1,0)为圆心,1为半径的圆.
故选:B.

点评 本题考查了极坐标方程化为直角坐标方程、圆的方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句.据此可以推知张博源、高家铭和刘雨恒分别研究的是C,A,B.(A莎士比亚、B雨果、C曹雪芹,按顺序填写字母即可.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照[40,50),[50,60),[60,70),[70,80)分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列2×2的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
成绩小于60分人数成绩不小于60分人数合计
初中年级
高中年级
合计
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
临界值表:
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从双曲线C:b2x2-a2y2=a2b2(a>0,b>0)的左焦点F1引圆x2+y2=a2的切线为l,切点为T,且l交双曲线的右支于点P,若点T满足$\overrightarrow{{F_1}T}=2\overrightarrow{TP}$,则双曲线C的离心率为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,有一直径为8的半圆形,半圆周上有一点C满足$∠ABC=\frac{π}{6}$,动点E,F在直径AB上,满足$∠ECF=\frac{π}{6}$,
(1)若$CE=\sqrt{13}$,求AE的长;
(2)设∠ACE=α,求三角形△ECF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U=A∪B={x∈Z|0≤x≤6},A∩(∁UB)={1,3,5},则B=(  )
A.{2,4,6}B.{1,3,5}C.{0,2,4,6}D.{x∈Z|0≤x≤6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,渐近线方程是:$y=±\frac{{2\sqrt{5}}}{5}x$,点A(0,b),且△AF1F2的面积为6.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)直线l:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点P,Q,若线段PQ的垂直平分线经过点A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,过点(2,$\frac{π}{6}$)且垂直于极轴的直线的极坐标方程是(  )
A.ρ=$\sqrt{3}$sin θB.ρ=$\sqrt{3}$cos θC.ρsin θ=$\sqrt{3}$D.ρcos θ=$\sqrt{3}$

查看答案和解析>>

同步练习册答案