精英家教网 > 高中数学 > 题目详情

在棱长为2的正方体ABCD-A1B1C1D1中,E为棱AB的中点,点P在平面A1B1C1D1,D1P⊥平面PCE.
试求:
(1)线段D1P的长;
(2)直线DE与平面PCE所成角的正弦值.

解:(1)建立如图所示的空间直角坐标系,则D1(0,0,2),E(2,1,0),C(0,2,0).

设P(x,y,2),则
因为D1P⊥平面PCE,所以D1P⊥EP,D1P⊥EC,
所以,解得(舍去)或 …(4分)
即P(),所以,所以.…(6分)
(2)由(1)知,平面平面PCE,
设DE与平面PEC所成角为θ,所成角为α,则
所以直线DE与平面PEC所成角的正弦值为. …(10分)
分析:(1)建立空间直角坐标系,利用D1P⊥平面PCE,确定P的坐标,从而可求线段D1P的长;
(2)由(1)知,平面平面PCE,利用向量的夹角公式可求直线DE与平面PEC所成角的正弦值为
点评:本题考查的知识点是用空间向量表示直线与平面所成角,建立适当的空间直角坐标系,将空间点,线,面之间的关系问题转化为向量问题是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)如图,在棱长为2的正方体ABCD-A'B'C'D'中,E,F分别是A'B'和AB的中点,求异面直线A'F与CE所成角的大小 (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:黑龙江省鹤岗一中2010-2011学年高一下学期期末考试数学理科试题 题型:013

在棱长为2的正方体A中,点E,F分别是棱AB,BC的中点,则点到平面EF的距离是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案