精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(2)若点P(x,y)在圆C上,求x+y的最大值和最小值.
分析:(1)展开两角差的余弦,整理后代入ρcosθ=x,ρsinθ=y得圆的普通方程,化为标准方程后由三角函数的平方关系化参数方程;
(2)把x,y分别代入参数式,利用三角函数化积后借助于三角函数的有界性求最值.
解答:解:(1)由ρ2-4
2
ρcos(θ-
π
4
)+6=0
,得
ρ2-4
2
ρ(cosθcos
π
4
+sinθsin
π
4
)+6=0

ρ2-4
2
ρ(
2
2
cosθ+
2
2
sinθ)+6=0

ρ2-4ρcosθ-4ρsinθ+6=0,
即x2+y2-4x-4y+6=0为所求圆的普通方程,
整理为圆的标准方程(x-2)2+(y-2)2=2,
令x-2=
2
cosα
,y-2=
2
sinα

得圆的参数方程为
x=2+
2
cosα
y=2+
2
sinα
 (α为参数);
(2)由(1)得:
x+y=4+
2
(cosα+sinα)
=4+2sin(α+
π
4
),
∴当sin(α+
π
4
)=1时,x+y的最大值为6,
当sin(α+
π
4
)=-1时,x+y的最小值为2.
故x+y的最大值和最小值分别是6和2.
点评:本题考查了点的极坐标和直角坐标的互化,考查了普通方程和参数方程的互化,训练了asinθ+bcosθ的化积公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案