精英家教网 > 高中数学 > 题目详情
8.已知方程kx+3=log2x的根x0满足x0∈(1,2),则k的范围(-3,-1).

分析 利用函数y=log2x图象经过点A(1,0),B(2,1).直线y=kx+3恒过点P(0,3).方程kx+3=log2x的根x0满足x0∈(1,2),因此kPA<k<kPB

解答 解:∵函数y=log2x图象经过点A(1,0),B(2,1).
直线y=kx+3经过点P(0,3).
kPA=$\frac{3-0}{0-1}$=-3,kPB=$\frac{3-1}{0-2}$=-1.
∵方程kx+3=log2x的根x0满足x0∈(1,2),
∴-3<k<-1.
故答案为:(-3,-1).

点评 本题考查了对数函数的图象及其运算性质、直线斜率及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(1)+f(2)+f(3)+…+f(2017)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.
(1)求证:EF∥平面ABC1D1
(2)四棱柱ABCD-A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+Dx+Ey+F=0的圆心在第二象限,半径为$\sqrt{2}$,且圆C与直线3x+4y=0及y轴都相切.
(1)求D、E、F;
(2)若直线x-y+2$\sqrt{2}$=0与圆C交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=5,b=8,C=60°,则$\overrightarrow{BC}$•$\overrightarrow{CA}$的值为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A1B1C1D1中,E为AB上一点.
(1)求BD和平面B1CD所成的角;
(2)当E点为AB中点,求锐二面角E-B1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x),g(x)分别是R上的奇函数和偶函数,若$f(x)+g(x)={log_2}(1+{2^x})$,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{3{x}^{2}}{2x-1}$-x≥0的解集为(  )
A.[-1,0]∪[$\frac{1}{2}$,+∞)B.(-1,0)∪($\frac{1}{2}$,+∞)C.[-1,0]∪($\frac{1}{2}$,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\sqrt{3}$$\overrightarrow a+\overrightarrow b+2\overrightarrow c=\overrightarrow 0$,且|$\overrightarrow a|=|\overrightarrow b|=|\overrightarrow c|=1$,则$\overrightarrow a•({\overrightarrow b+\overrightarrow c})$等于(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.2D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案