精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=5,b=8,C=60°,则$\overrightarrow{BC}$•$\overrightarrow{CA}$的值为-20.

分析 根据条件可知,$|\overrightarrow{BC}|=5$,$|\overrightarrow{CA}|=8$,$\overrightarrow{BC}$与$\overrightarrow{CA}$的夹角为120°,这样进行向量数量积的计算便可得出$\overrightarrow{BC}•\overrightarrow{CA}$的值.

解答 解:如图,

$\overrightarrow{BC}•\overrightarrow{CA}=|\overrightarrow{BC}||\overrightarrow{CA}|cos120°$=$5×8×(-\frac{1}{2})=-20$.
故答案为:-20.

点评 考查向量夹角的概念,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.根据图象特征分析以下函数:
①f(x)=3-x              ②f(x)=x2-3x             ③f(x)=-$\frac{1}{x}$              ④f(x)=-|x|⑤y=ln(x+1)
其中在(0,+∞)上是增函数的是③⑤;(只填序号即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点M(3,0),两直线l1:2x-y-2=0与l2:x+y+3=0.
(1)过点M的直线l与l1,l2相交于P,Q两点,且线段PQ恰好被M所平分,求直线l的方程;
(2)求l1关于l2对称的直线l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)定义在(0,+∞)上的单调函数,且满足条件f(4)=1,对任意x1,x2∈(0,+∞),有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)如果f(x+6)>2,求x的取值范围;
(3)若对于任意x∈[1,4]都有f(x)≥m2+m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,△ABC中,D为AC的中点,AB=2,BC=$\sqrt{7}$,∠A=$\frac{π}{3}$.
(1)求cos∠ABC的值;
(2)求BD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知方程kx+3=log2x的根x0满足x0∈(1,2),则k的范围(-3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则以B1为顶点,以平面ACD1被球O所截得的圆为底面的圆锥的全面积为$\frac{2π}{3}$.(圆锥全面积S=πr(l+r),其中r为圆锥的底面半径,l为母线长)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把[0,1]内的均匀随机数分别转化为[0,4]和[-4,1]内的均匀随机数,需实施的变换分别为(  )
A.y=-4x,y=5x-4B.y=4x-4,y=4x+3C.y=4x,y=5x-4D.y=4x,y=4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),则(  )
A.cos<$\overrightarrow{a}$,$\overrightarrow b$>=120°B.$\overrightarrow a$⊥$\overrightarrow b$C.$\overrightarrow{a}$∥$\overrightarrow b$D.|$\overrightarrow a$|=|$\overrightarrow b$|

查看答案和解析>>

同步练习册答案