精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,Sn表示前n项和,a2+a8=18-a5,则S9=
54
54
分析:根据给出的数列是等差数列,由等差中项的概念结合a2+a8=18-a5求a5,然后再由等差数列的前n项和公式写出S9,把出S9可转化为9a5,则结论可求.
解答:解:因为数列{an}是等差数列,所以a5是a2与a8的等差中项,所以a2+a8=2a5
由a2+a8=18-a5,所以2a5=18-a5,所以,a5=6.
在等差数列{an}中,S9=
(a1+a9)×9
2
=9a5

所以,S9=9×6=54.
故答案为54.
点评:本题考查了等差数列的前n项和,考查了等差中项的概念,有穷等差数列如果含有奇数项,则其前n项和为n倍的中间项,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案