精英家教网 > 高中数学 > 题目详情
9.已知抛物线y=ax2和直线1:x+y-1=0,若抛物线上总存在关于l对称的两点,求实数a的取值范围.

分析 设对称点A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0).由题意可设直线AB的方程为:y=x+m,与抛物线方程联立,可得△>0及其根与系数的关系,进而可得中点坐标表示m,代入△>0即可.

解答 解:设抛物线上两对称点A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0).
由题意可设直线AB的方程为:y=x+m,
联立$\left\{\begin{array}{l}{y=x+m}\\{y=a{x}^{2}}\end{array}\right.$,化为ax2-x-m=0.
由题意可得△>0,即1+4am>0.(*)
∴x1+x2=$\frac{1}{a}$,∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2a}$.
∵点M在直线x+y=1上,∴y0=1-$\frac{1}{2a}$.
又y0=x0+m,
∴m=1-$\frac{1}{a}$.代入(*)可得:1+4a•(1-$\frac{1}{a}$)>0,
化为4a>3,解得a>$\frac{3}{4}$.
则a的取值范围是($\frac{3}{4}$,+∞).

点评 熟练掌握抛物线上关于已知直线存在对称点问题转化为判别式及根与系数的关系、中点坐标公式、斜率乘积等于-1等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若点A(m,n)在第一象限,且在直线$\frac{x}{3}$+$\frac{y}{4}$=1上,则mn的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图.四棱锥P-ABCD中,PB⊥底面ABCD.PC与平面ABCD所成角的正切值为$\frac{1}{2}$,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.
求证:平面PCD⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PAB⊥平面ABCD,且PA=PB,E是PA的中点.
(1)求证:PC∥平面EBD;
(2)平面EBD分棱锥P-ABCD为两部分,求这两部分中体积较小者与体积较大者的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求证:如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直.
(2)若将(1)中的条件改为“如果一个平面与另一个平面的垂面平行”,那么结论是否仍然成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-圆柱形圆木,高10米,底面半径R米,把圆木锯成高10米的长方体形柱木,问柱木底面的长和宽分别为多少米时,其体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x∈Z.y∈Z满足xy+2=2(x+y),则x2+y2的最大值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图圆锥的轴截面为等腰直角三角形SAB,Q为底面圆周上一点.
(1)如果QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2$\sqrt{3}$,求圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,AD与BC是四面体ABCD中互相垂直的棱,若BC=2,AD=4,且∠ABD=∠ACD=60°,则四面体ABCD的体积的最大值是$\frac{4}{3}\sqrt{11}$.

查看答案和解析>>

同步练习册答案