分析 设对称点A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0).由题意可设直线AB的方程为:y=x+m,与抛物线方程联立,可得△>0及其根与系数的关系,进而可得中点坐标表示m,代入△>0即可.
解答 解:设抛物线上两对称点A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0).
由题意可设直线AB的方程为:y=x+m,
联立$\left\{\begin{array}{l}{y=x+m}\\{y=a{x}^{2}}\end{array}\right.$,化为ax2-x-m=0.
由题意可得△>0,即1+4am>0.(*)
∴x1+x2=$\frac{1}{a}$,∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2a}$.
∵点M在直线x+y=1上,∴y0=1-$\frac{1}{2a}$.
又y0=x0+m,
∴m=1-$\frac{1}{a}$.代入(*)可得:1+4a•(1-$\frac{1}{a}$)>0,
化为4a>3,解得a>$\frac{3}{4}$.
则a的取值范围是($\frac{3}{4}$,+∞).
点评 熟练掌握抛物线上关于已知直线存在对称点问题转化为判别式及根与系数的关系、中点坐标公式、斜率乘积等于-1等是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com