精英家教网 > 高中数学 > 题目详情
17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PAB⊥平面ABCD,且PA=PB,E是PA的中点.
(1)求证:PC∥平面EBD;
(2)平面EBD分棱锥P-ABCD为两部分,求这两部分中体积较小者与体积较大者的体积之比.

分析 (1)连接AC,BD,交于O,连接OE,则O是AC的中点,利用三角形中位线的性质,可得OE∥PC,利用线面平行的判定,即可证明结论;
(2)确定VE-ABD=$\frac{1}{4}$VP-ABCD,即可求出这两部分中体积较小者与体积较大者的体积之比.

解答 (1)证明:连接AC,BD,交于O,连接OE,则O是AC的中点,
∵E是PA的中点,
∴OE∥PC,
∵PC?平面EBD,OE?平面EBD,
∴PC∥平面EBD;
(2)解:由题意,E到平面ABD的距离等于P到平面ABCD的距离的一半,
△ABD的面积是平行四边形ABCD的面积的一半,
∴VE-ABD=$\frac{1}{4}$VP-ABCD
∴这两部分中体积较小者与体积较大者的体积之比是1:3.

点评 本题考查线面平行,考查体积的计算,正确运用线面平行的判定定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.为了计算运河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,则两景点B与C之间的距离为113.12(m).(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:$\sqrt{2}$=1.414,$\sqrt{3}$=1.732,$\sqrt{5}$=2.236).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)设G是△ABC的重心,证明:△GBC,△GAC,△GAB的面积相等.
(2)利用(1)的结论,证明:三角形顶点到重心的距离,等于重心到对边中点的距离的2倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=4x,点A(1,2),过点A任意作两条倾斜角互补的直线,分别于抛物线交于两点P,Q.证明:直线PQ的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,线段AB、CD交于点O,且$\frac{AO}{OB}$=$\frac{CO}{OD}$,用向量的运算证明AC∥DB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,点E为AB中点.
证明:平面PED⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y=ax2和直线1:x+y-1=0,若抛物线上总存在关于l对称的两点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当x∈[-2,2]时,函数f(x)=|x5-5x|的最大值为22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=AB,点M在棱PD上,PB∥平面ACM.
(1)试确定点M的位置,并说明理由;
(2)求四棱锥P-ABCD的表面积.

查看答案和解析>>

同步练习册答案