精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=AB,点M在棱PD上,PB∥平面ACM.
(1)试确定点M的位置,并说明理由;
(2)求四棱锥P-ABCD的表面积.

分析 (1)设AC∩BD=O,则O是BD的中点,设点M为PD中点,在△PBD中,PB∥OM,由此能够确定M的位置使PB∥平面ACM.
(2)根据四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=AB,可求四棱锥P-ABCD的表面积

解答 解:(1)设AC∩BD=O,则O是BD的中点,
设点M为PD中点,
∵在△PBD中,PB∥OM,PB?平面ACM,OM?平面ACM,
∴PB∥平面ACM.
故当点M为PD中点时,PB∥平面ACM.
(2)∵四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=AB,
∴四棱锥P-ABCD的表面积=1×1+2×$\frac{1}{2}×1×1$+2×$\frac{1}{2}×1×\sqrt{2}$=2+$\sqrt{2}$.

点评 本题考查满足条件的点的位置的确定,考查四棱锥P-ABCD的表面积的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PAB⊥平面ABCD,且PA=PB,E是PA的中点.
(1)求证:PC∥平面EBD;
(2)平面EBD分棱锥P-ABCD为两部分,求这两部分中体积较小者与体积较大者的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图圆锥的轴截面为等腰直角三角形SAB,Q为底面圆周上一点.
(1)如果QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2$\sqrt{3}$,求圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为梯形,AD∥BC,且AB=2BC=4,PA=AD=3,∠ABC=60°,E是BC的中点.
(1)求证:AD⊥平面PAC;
(2)试在线段PD上确定一点G,使CG∥平面PAE,并求此时AD与平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$(a>0),若a∈($\frac{1}{2}$,1),f(x)存在两个极值点x1,x2.试比较f(x1)+f(x2)与f(0)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面ABC⊥平面BCD,AB=BC=BD=2,∠ABC=∠DBC=$\frac{π}{3}$,E为棱AD的中点.
(1)证明:AD⊥BC;
(2)求四面体A-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,AD与BC是四面体ABCD中互相垂直的棱,若BC=2,AD=4,且∠ABD=∠ACD=60°,则四面体ABCD的体积的最大值是$\frac{4}{3}\sqrt{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在棱长为40m的正方体AG1H1D-GA1D1H中,E、E1、F1、F分别是AG、G1A1、H1D1、DH的中点,B、B1是EE1上的点,C、C1是FF1上的点,且EB=E1B1=FC=F1C1=10m,求证:平面ABCD∥平面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于任意的三个正数a,b,c,求证:a+b+c≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$,并指出等号成立的条件.

查看答案和解析>>

同步练习册答案